
A D A M T U R O F F

practical Perl
D AT E A N D T I M E
F O R M AT T I N G I N P E R L

Adam is a consultant who specializes in using Perl to
manage big data. He is a long-time Perl Monger, a
technical editor for The Perl Review, and a frequent
presenter at Perl conferences.

ziggy@panix.com

D E A L I N G W I T H D AT E S A N D T I M E S I S A
common source of needless errors. The
brute-force methods of dealing with dates
tend to ignore the many little details that
are easy to forget. Thankfully, there are bet-
ter alternatives. Using modules like POSIX
or DateTime not only makes date-handling
code easier to manage, but it also makes
programs much more featureful and
robust.

Date handling is one of those topics that is easily
overlooked in many programs. The vast majority of
programs I have written over the years do not need to
deal with dates and times. The most common use of
dates and times is simply informative, like putting a
timestamp on entries in a log file:

#!/usr/bin/perl -w

use strict;

Method 1: peppering print statements about
print STDERR "[" . localtime() . "] - process ".

"starting\n";
... do stuff ...
print STDERR "[" . localtime() . "] - process ".

"complete\n";

Method 2: use a logging function
sub logmsg ($) {

my $msg = shift;
my $time = localtime();
print STDERR "[$time] $msg\n";

}

Using localtime() to grab the current time is common
because it’s easy to use and its behavior is so simple.
In order to work properly, Perl assumes a lot of con-
text so that it can do the right thing. First, when the
localtime() built-in function is called with no parame-
ters, it assumes that you want to get the time right
now and operates on the value that would be supplied
by time(), a value representing the number of seconds
since the beginning of the UNIX epoch.

The second piece of context here is how localtime() is
used. Depending on how it is called, this function will
produce either a single scalar value (a timestamp
string) or a list of date-time components (seconds,
minutes, hours, etc.). In the instances above, the out-
put of localtime() is concatenated into a string, so it is
used in a scalar context and would produce output
like this:

[Fri Mar 25 12:35:28 2005] - process starting
[Fri Mar 25 12:48:02 2005] - process complete

Some common uses of date information are a little
more involved. For example, I might want to express

; LO G I N : J U N E 2 0 0 5 P R AC TI C A L P E R L 29

30 ; L O G I N : V O L . 3 0 , N O . 3

the current date in YYYY-MM-DD format for archiving log files. In a shell script
this is fairly trivial to do, with the date(1) utility:

#!/bin/sh
cd $APPHOME/logs
mv app.log app.log.'date +%Y-%m-%d'

In Perl, this kind of date formatting is possible, but a little more involved. To start,
localtime() needs to be called in list context to convert UNIX epoch time into val-
ues such as year, month, and day:

#!/usr/bin/perl -w

use strict;

my ($sec, $min, $hour, $day, $month, $year, $wday, $yday, $dst)
= localtime();

When trying to retrieve just date information, we can ignore the unnecessary val-
ues and focus on the year, month, and day values by using an array slice:

#!/usr/bin/perl -w

use strict;

my ($day, $month, $year) = (localtime())[3..5];

While localtime() does provide values for month and year, it mimics the format
returned by the standard C library functions. Month values fall in the range 0..11,
and years are the actual year minus 1900. In order to produce sensible values from
localtime(), these values must be adjusted after each and every call:

my ($day, $month, $year) = (localtime())[3..5];
$month++;
$year+=1900;

print "$year-$month-$day"; ## format as YYYY-MM-DD

However, even this isn’t quite correct. In order to produce a two-digit month,
these values must be formatted using a function such as sprintf or printf:

my ($day, $month, $year) = (localtime())[3..5];

format YYYY-MM-DD properly
printf ("%04d-%02d-%02d", $year+1900, $month+1, $day);

Clearly, this is a lot of work in order to do something that should be easy.

Formatting with the POSIX Module

These issues are typical of the kinds of small details that pervade handling dates
and times. Thankfully, correct date and time formatting is a solved problem. C
programmers may remember the strftime(3) function for handling this problem. A
version of this function is available by default in Perl and is provided in the POSIX
module. (This same behavior is exposed in the shell through the date(1) utility.)

Perl’s POSIX::strftime() function takes a date format string as its first argument and
a series of time components (seconds, minutes, . . . year, etc.) to produce a format-
ted date-time value. Fortunately, the order of the time values that strftime()
expects is precisely the order of values that localtime() produces. Therefore, pro-
ducing a date formatted as YYYY-MM-DD is as simple as:

#!/usr/bin/perl -w

use strict;
use POSIX qw(strftime);

print strftime("%Y-%m-%d", localtime()), "\n";

(The meaning of the formatting specifiers used in the first argument is described
in the strftime(3) man page.)

; LO G I N : J U N E 2 0 0 5 P R AC TI C A L P E R L 31

Another common requirement for producing date values is to use names for
months and days of the week. Frequently, programs that need to do this contain an
array with the relevant names:

my @months;
$months[0] = "January";
$months[1] = "February";
##....
$months[11] = "December";

Or, more succinctly:
my @months = qw(January February ... December);

Sadly, this is an antipattern common among programmers who do not deal with
dates and times on a regular basis—that is to say, most programmers. I know I’ve
done this more times than I care to count, and every time I feel guilty. The problem
here isn’t that defining an array of month or day names is necessarily wrong or bad,
but it is needlessly repetitive.

Instead of redefining these lookup tables in each and every script that needs them
(or, better, redefining them once in a module), why not just use the lookup tables
that are already predefined in the standard C library? Here are some common for-
mats, available through POSIX::strftime():

#!/usr/bin/perl -w

use strict;
use POSIX qw(strftime);

Friday, March 25, 2005
print strftime("%A, %B %m, %Y", localtime()), "\n";

Fri, Mar 25, 2005
print strftime("%a, %b %m, %Y", localtime()), "\n";

Creating Dates and Times POSIX-Style

Formatting times can be a tricky business, but not as tricky as performing arith-
metic on dates. All UNIX date handling is ultimately done in terms of seconds
since January 1, 1970, and the time() built-in function returns the current number
of seconds since the start of the UNIX epoch. Figuring out the count at midnight
this morning,or midnight tomorrow morning should be a simple process of adding
and subtracting seconds from the current time. (The output of localtime() in list
context can tell us how many hours, minutes, and seconds to fill in the missing
pieces.)

For example, determining the time a few days in the past or future is just a matter
of adding or subtracting multiples of the value 86,400 (that is, 24*60*60). While
this usually works, this brute-force solution isn’t quite accurate. In most time
zones, there is one day a year that has 23 hours, and another that has 25 hours,
marking the switch to and from Daylight Savings Time. Periodically, 86,400 sec-
onds ago could still be “today,” or it could be “two days ago.” A milder version of
this bug occurs when “three days after 9 a.m. Friday morning” becomes Monday
morning at 8 a.m., 9 a.m., or 10 a.m., depending on the week.

There are other complications to this method. How do you obtain the time value
for the beginning of next month? How do you add three months to a specific date?
How do you determine “three weeks ago”?

The simple solution is to use the mktime() function, also found in the POSIX mod-
ule. This function takes the same series of time components returned by local-
time() and expected by strftime() and returns the corresponding epoch time. That
is, the same caveats about month values being in the range 0..11 and year values
being year – 1900 still apply to the inputs to mktime().

32 ; L O G I N : V O L . 3 0 , N O . 3

#!/usr/bin/perl -w

use strict;
use POSIX qw(mktime strftime);

Print a timestamp for the start of 1999

print scalar(localtime(mktime(0,0,0,1,0,99))), "\n";

Fortunately, the values processed by mktime are not strictly limited in range. That
is, mktime expects days to start at 1, seconds, minutes, hours, and months to start
at 0, and so on. To ask for the time at one second before midnight midway through
2010, simply adjust the inputs accordingly:

sec min hr day mon year
print scalar(localtime(mktime(-1, 0, 0,183, 0, 110))), "\n";

Similarly, if I want to know what the epoch time was three weeks ago or will
be three weeks hence, I can add or subtract 21 days to the current day value
returned from localtime():

my @now = localtime(); ## get the current [sec, min, ...] values

my @past = @now;
$past[3] -= 21; ## same time, 3 weeks ago

my @future = @now;
$future[3] += 21; ## same time, 3 weeks from now

Print out all three dates, in chronological order
print scalar(localtime(mktime(@past))), "\n";
print scalar(localtime(mktime(@now))), "\n";
print scalar(localtime(mktime(@future))), "\n";

Output:
Fri Mar 4 12:52:23 2005
Fri Mar 25 12:52:23 2005
Fri Apr 15 13:52:23 2005

(Note the switch from standard time to daylight savings time between March 25
and April 15.)

Date Handling with the DateTime Modules

For casual uses, time(), localtime(), POSIX::mktime(), and POSIX::strftime() can be
used in conjunction to solve simple problems of creating and formatting time val-
ues. But there are still other problems that frequently arise when dealing with dates.
One limitation of localtime() and strftime() is that they only work in the current
time zone, whatever that may be. If you need to format the current time for a user
in another time zone, things start to get tricky.

Thankfully, these issues are easily solved with the DateTime family of modules. As
an added bonus, DateTime does away with the silliness of years being represented
as “year – 1900” and months falling in the range 0..11. Here is an example of how
to construct a new DateTime object that represents a single point in time:

#!/usr/bin/perl -w

use strict;
use DateTime;

Construct an object at a fixed point in time
my $date = new DateTime (

year => 2005,
month => 1, ## 1..12
day => 1,
hour => 12, ## 0..23
minute => 30,
time_zone => "America/New_York"

);

; LO G I N : J U N E 2 0 0 5 P R AC TI C A L P E R L 33

Construct an object for the current time
my $now = DateTime->now->set_time_zone("America/New_York");

The DateTime module handles a lot of details with dates and times, but it does not
assume what the current time zone might be. For best results, a time zone should
be specified whenever constructing a DateTime object. The time zone names that
DateTime recognizes are the same ones that are found in the Olsen database, a
public database of all time-zone information. (This is also the source data that is
used to build the files in /usr/share/zoneinfo.) A DateTime object that is con-
structed without a time zone is constructed in the GMT time zone; specifying a
time zone adjusts the component values accordingly.

DateTime objects can be formatted using the strftime() method, which accepts the
same format strings as the POSIX::strftime() function. Because a DateTime object
represents a fixed point in time, adjusting the time zone adjusts the formatted rep-
resentation as expected:

my $now = DateTime->now->set_time_zone("America/New_York");
print $now->strftime("%c"); ## prints 'Mar 25, 2005 12:52:23 PM'

Same time, different time zones
$now->set_time_zone("America/Los_Angeles");
print $now->strftime("%c"); ## prints 'Mar 25, 2005 9:52:23 AM'

$now->set_time_zone("Europe/London");
print $now->strftime("%c"); ## prints 'Mar 25, 2005 5:52:23 PM'

DateTime also handles many localization issues. For example, in French, not only
are the names of the days and months different, but the standard date formats are
different. Taking the same time value, we can display that time in Paris for an
American viewer, a British viewer, and a French viewer. To switch the localization
of a date, simply update the locale on that DateTime object:

Convert to Paris time
$now->set_time_zone("Europe/Paris");

Display, using the default (US English) localization
print $now->strftime("%c"); ## 'Mar 25, 2005 6:52:23 PM'

Convert to a British localization
$now->set_locale(“en_GB”);
print $now->strftime(“%c”); ## '25 Mar 2005 18:52:23'

Convert to a French localization
$now->set_locale("fr");
print $now->strftime("%c"); ## '25 mars 05 18:52:23'

The vagaries of time-zone arithmetic are handled through the
DateTime::TimeZone family of modules. Each of these modules define the offset
from GMT and the rules for switching to and from Daylight Savings Time. The
DateTime::Locale modules define the localization interfaces, and include data
such as the native formats for dates and the names of the days and months. Both
of these modules are installed with DateTime.

The Perl DateTime project has also built many other extensions to the core Date-
Time modules. Some of these modules provide calendar handling, formatting and
parsing of dates, date calculations, date spans, and many other features. Sadly, the
features provided by these modules are beyond the scope of this article; for more
information, please visit http://datetime.perl.org.

Conclusion

Date and time handling is an area that does not get a lot of attention in many Perl
programs. Using the simple and obvious brute-force techniques is actually quite
complicated and very error-prone. Using a standardized library to handle dates
makes the process easy and robust, whether you areusing the standard POSIX
module or the DateTime modules from CPAN.

