
J A M E S  B U T L E R  A N D  S H E R R I  S P A R K S

spyware and 
rootkits
T H E  F U T U R E  C O N V E R G E N C E

Jamie Butler is the director of engineering at HBGary,
Inc. and is co-author of the upcoming book Rootkits:
The Day After. He is also a frequent speaker at com-
puter security conferences, presenting his research on
kernel reverse engineering, host-based intrusion pre-
vention, and rootkits.

james.butler@hbgary.com

Sherri Sparks is a Ph.D. student of Computer Science
at the University of Central Florida. Her current
research interests are in software security, reverse
engineering, and intrusion detection.

ssparks@longwood.cs.ucf.edu

A L L  O F  A  S U D D E N  Y O U R  P E N T I U M  4 ,
3.2GHz desktop with 3GB of memory takes
half an hour to boot into Windows. What’s
more, you can’t seem to open Internet
Explorer without being escorted to a home
page you’d rather die than let your mother
see. Of course, that is to say nothing of the
unsolicited pop-up advertisements bom-
barding you at every click. And if all of that
wasn’t indication enough, you know there’s
a problem when your machine starts com-
plaining about being “out of memory”…and
the only program running is Notepad!
Welcome, dear reader, to the modern world-
wide scourge: spyware.

Understanding the Threat

W H AT  I S  S P Y WA R E ?

The term “spyware” encompasses a large class of
software capable of covertly monitoring a system
and transmitting collected data to third parties.
Such data may range from visited URLs to pass-
words and other confidential information. As of the
2003 publication of Emerging Internet Threats
Survey,1 one-third of companies have been affected
by spyware-infected systems, and that number is
growing. The implications are alarming on both
commercial and private fronts. Of primary concern
are the violations to personal privacy and the pro-
tection of intellectual property. Secondary issues
relate to the degradation of system performance,
network bandwidth, and utilization of IT personnel
as they are forced to deal with application conflicts
and system instability. 

I N F E C TI O N  V E C TO R S

A spyware infection is most often unintentional;
however, there are cases where the software is pur-
posely installed on someone’s system to gather per-
sonal information or to monitor their Internet
browsing habits. Commercial key loggers and
parental control software both fall into this category.
Unintentional infection may result from the
exploitation of unpatched browser vulnerabilities
and social engineering. It is not uncommon for
unsuspecting users to be tricked into downloading
and installing software they believe to be something
else. Spyware may also piggy-back on the installa-

8 ; L O G I N : V O L . 2 9 , N O . 6



; LO G I N : D E C E M B E R  2 0 0 4  S E C U R IT Y: S PY WA R E  A N D  RO OTK ITS 9

tion of another seemingly legitimate application. For instance, peer-to-peer
networking software such as Kazaa and Bear Share, most of which contains
embedded spyware, is proliferating. It goes without saying that the popular-
ity of these programs ensures a continuing supply of infected hosts. 

S P Y WA R E  C H A R AC TE R I STI C S

We can divide spyware characteristics into primary and secondary traits,
where primary traits relate to actively spying on the target system and sec-
ondary traits relate to concealing the spyware presence from the system’s
users. Primary traits include taking screenshots or logging keystrokes, run-
ning applications, and capturing URLs of visited Web pages. Sending logged
information to a third party could also be considered a primary characteris-
tic. In contrast, functionality for hiding registry entries, files, and running
processes would be considered secondary traits. Behaviors that make the
application difficult to remove also fall into this category. These types of
behaviors include loading during the boot process, disabling detection pro-
grams, and reinstallation after removal. 

Current-generation spyware is defined by a vast number of primary charac-
teristics, but except for specific “hacker tools” (e.g., trojans), secondary
characteristics have been either nonexistent or relatively primitive up to this
point. In other words, most of this spyware is very efficient at spying but not
very efficient at hiding. Consequently, it has, for the most part, been
detectable with simple file- and registry-scanning techniques. Nonetheless,
information security is a co-evolutionary process, and spyware develop-
ment/detection is no exception. A few leading-edge spyware developers
such as CoolWebSearch2 are adapting and forcing us to an essential junc-
ture. We note that the primary traits of spyware fundamentally describe a
software trojan, while the secondary traits essentially define a rootkit. And
we ask ourselves, What is the next generation in spyware? . . . Trojan meets
Rootkit?

The Next Generation of Spyware: Trojan Meets Rootkit?

The functional requirements of a successful spyware application and a suc-
cessful trojan or rootkit are remarkably similar. First, spyware programs,
like rootkits and trojans, need to intercept user data such as keystrokes and
network communications. Secondly, they must hide their presence from the
user and/or make uninstallation difficult. Currently lacking sophistication
in this second area, it is reasonable to expect that primitive spyware applica-
tions will continue to evolve their ability to conceal themselves. Rootkits
have already mastered this ability. By understanding the application of
advanced rootkit techniques to spyware, we may be better prepared to deal
with the threat of an impending spyware epidemic.

Regardless of the goal, whether it be hiding presence or intercepting com-
munication, spyware and rootkits must both wedge themselves between the
legitimate calling program, such as Internet Explorer, and the end commu-
nication point, either another node on the network or the underlying oper-
ating system. This involves altering normal program control flow. In order to
accomplish this, rootkits use two primary technologies: hooks and layers.
Once these technologies are in place, the spyware or rootkit can capture
keystrokes as someone logs into her/his online bank account, or they can
hide the presence of a particular process or network port from appearing on
the local machine. In the remainder of this section we give an overview of
rootkit techniques that are applicable to current and future spyware

 



10 ; L O G I N : V O L . 2 9 , N O . 6

developments. 

U S E R  M O D E  TE C H N I Q U E S  ( I M P O RT  H O O K I N G  A N D  B ROWS E R  H E L P E R  O BJ E C TS )

Without a doubt, techniques such as import address table (IAT) hooking
and browser helper objects (BHOs) are the most common methods of pro-
gram subversion used by rootkits and trojans. Unfortunately, the Windows
architecture makes these types of attacks accessible to even the lowest, most
humble user mode applications. This is due to the fact that user programs
and upper-level operating system components coexist at the same privilege
level. Ultimately, spyware and rootkits have complete control over an appli-
cation because they run with the same rights as the application they are
hijacking. Some forms of spyware, such as key loggers and browser hijack-
ers, already employ these techniques. Nevertheless, we expect to see an
increase in their utilization as primitive spyware applications take on more
rootkit-like characteristics to evade detection and removal.

In user mode, an attacker generally targets the APIs a program uses. This
makes sense when you consider that user applications must rely upon the
operating system to provide valuable functions such as opening files and
writing to the registry. For example, if a spyware program is able to intercept
a user mode scanner application’s effort to open its files, it can return errors
indicating those files don’t exist. Subsequently, the scanner will falsely
report that the system is uninfected. Windows APIs are implemented as
dynamically linked libraries (DLLs) and are the basis of IAT hooking
attacks.

The design of DLLs facilitates the attack. When an application uses an API
function exported from a DLL such as InternetConnect in Wininet.dll, the
compiler creates an IMAGE_IMPORT_DESCRIPTOR data structure in the
application’s binary file. The IMAGE_IMPORT_DESCRIPTOR contains the
name of the DLL from which the function is exported and a pointer to a
table containing all of the functions exported by the DLL that are used by
the application. Each member of this table is an IMAGE_THUNK_DATA struc-
ture which is filled in at load time, by the Windows loader, with the memory
address of the desired function. We can summarize the flow of execution as
follows. Suppose an application makes a call to InternetConnect. First, the
program code calls into the Import Address Table (IAT). From there, the IAT
contains a jump that is taken to the destination address of the real function.
It is easy to see that the IAT is a likely target for a rootkit or spyware. By
changing a single function pointer, the attacker can re-route program execu-
tion through his/her own code, thereby capturing data, altering data, or even
hiding the attacker’s presence (see Figure 1). A more comprehensive expla-
nation of the Windows portable executable (PE) format and IAT structure
can be found in Matt Pietrek’s “Inside Windows.”3

Figure 1. Normal execution path vs. hooked execution path for an IAT hook

 



; LO G I N : D E C E M B E R  2 0 0 4  S E C U R IT Y: S PY WA R E  A N D  RO OTK ITS 11

Browser Helper Objects (BHOs) demonstrate another DLL-based userland
attack technique. While BHOs are specifically designed to customize and
extend Internet Explorer, many browsers provide similar features that can
be maliciously exploited by spyware applications. A BHO is suspect if a user
suddenly notices that his home page has been redirected, “new” toolbars
have suddenly appeared in his browser, or his list of “favorites” has been
modified. The risk of BHOs, however, extends beyond the mere inconven-
ience of having one’s homepage hijacked. By definition, BHOs are in-process
Component Object Model (COM) DLLs which Internet Explorer loads on
startup. The result is that a BHO has complete access to Explorer’s process
address space. In practical terms, this means a BHO can intercept all of the
events occurring in the user’s browser. For example, the BEFORENAVIGATE2
event is triggered before Internet Explorer navigates to a Web page. This
means that a BHO has access to the URL before the page is even down-
loaded. More alarming is the fact that BHOs are not limited to acting on
browser events. Really, anything is possible within the constraints of the
permissions of the user who launched Internet Explorer. This includes cre-
ating or deleting files, executing programs, reading email, and recording and
sending private Internet banking information. What makes BHOs particu-
larly troubling is that it is not obvious that they are running. Since they run
as a DLL within Internet Explorer, it is almost impossible to distinguish a
malicious BHO from a completely benign one. 

K E R N E L  M O D E  TE C H N I Q U E S  ( C A L L  TA B L E  H O O K I N G  A N D  F I LTE R  D R I V E R S )

In our discussion of user mode we noted that user applications coexist with
some portions of the operating system. We now extend that statement to
kernel mode. At this highest of privilege levels, drivers coexist with the
Windows kernel itself. This means that a malicious driver has the power to
usurp complete control of the operating system environment. Indeed, mod-
ern rootkits have reached an alarming degree of sophistication in their
employment of kernel mode hooking techniques. Fortunately, writing a ker-
nel driver is something of a “black art,” so that, with the exception of a very
few advanced key loggers, most spyware developers haven’t caught up to the
rootkit developers yet. Nevertheless, as spyware continues to evolve in com-
plexity and stealth, these techniques may become a very real threat to infor-
mation security. In the following discussion we cover three of the most com-
mon kernel hooking techniques: system call table hooking, filter drivers,
and IRP table hooking. 

The system call table (SCT) is one of the simplest, most effective places to
hook in the kernel. It provides the gateway into the kernel through which
all user mode API calls must pass. In most operating systems the SCT is
implemented as a table of pointers to the functions the kernel exports to
user mode applications. The Windows system call mechanism is also based
on this concept. Calls to the Kernel32.dll and Ntdll.dll API functions pass
through the kernel function called KiSystemService, which does some sanity
checking on the function parameters and then calls the referenced SCT
function. By modifying the function pointer in the table to point to attack
code, an attacker has total control over the operation of the function (see
Figure 2). Spyware and rootkits can use this trick to filter information they
do not want the user or system administrator to see. For example, by hook-
ing NtQuerySystemInformation in the SCT and filtering its response, the
attacker can hide any file or directory in Windows. Although the idea of
modifying a table of function pointers is reminiscent of userland IAT hook-
ing, kernel SCT hooking is a much more powerful technique. Where IAT 



Figure 2. Normal execution path vs. hooked execution path for an SCT hook

Figure 3. Windows has a layered driver architecture

hooking is local to the application process being hooked, an SCT hook will
globally intercept functions across all processes, including the operating
system itself.

In Windows, the drivers for a system’s hardware devices are layered into a
hierarchal “device stack.” Furthermore, a given hardware device may have
one or more drivers associated with it, which we can visualize as a vertical
stack of layered components (see Figure 3). These drivers communicate
with each other and the operating system by means of I/O request packets
(IRPs). Filter drivers and IRP hooking techniques exploit the layered nature
of Windows’ driver architecture. Unlike normal drivers, filter drivers are
transparently inserted on top of or in between existing drivers in the stack,
using the kernel API, IoAttachDevice. Although they are sometimes legiti-
mately used to add functionality to an existing lower-level driver, an
attacker will typically use them to either modify or intercept data. Key log-
gers and network sniffers typically use them to capture user passwords and
other sensitive information. 

By design, layered filter drivers require a lot of code to implement. Further-
more, they may be more easily detected than a driver that does direct IRP
hooking. Instead of installing a filter, an attacker can directly hook the func-
tions exported by a target device driver in its IRP major function table. The
IRP major function table is simply an array of 28 function pointers to han-
dler functions in response to notifications and requests which the driver
receives from either a client application or the operating system. An applica-
tion typically sends an IRP to a driver to request a specific service. For
example, IRP_MJ_DIRECTORY_CONTROL is sent to file system drivers to

12 ; L O G I N : V O L . 2 9 , N O . 6

 



; LO G I N : D E C E M B E R  2 0 0 4  S E C U R IT Y: S PY WA R E  A N D  RO OTK ITS 13

request the list of directories and files. By intercepting and altering different
I/O requests, spyware can easily hide on the file system or eavesdrop on net-
work communications. Some commercial software such as ZoneAlarm4

even uses this technique to intercept and regulate network traffic. It is not
difficult for an attacker to find a particular driver object in memory. Win-
dows’ kernel provides the function called IoGetDeviceObjectPointer which
spyware or a rootkit can call to get a pointer to the named device object.
This device object contains a pointer to its corresponding driver object
which the attacker can use to reference the target’s IRP function table. Fig-
ure 4 shows the relationship among these objects in memory.

Figure 4. Illustration of hooking a driver’s IRP table

H Y B R I D  TE C H N I Q U E S  ( I N L I N E  F U N C TI O N  H O O K I N G )

Inline function hooking can be considered a hybrid technique, since it can
be applied either to a user mode application or to the kernel. This technique
is a bit more advanced and harder to detect than the methods previously
mentioned. Rather than simply replacing a pointer in a table, an inline hook
alters the target function itself. Normally this is done by replacing the first
few bytes of the function with an unconditional jump to the rootkit or spy-
ware code. Before this overwrite occurs, the attacker saves the bytes being
replaced, so the semantics of the original function are maintained. The trick
here is in the fact that instructions are variable length on an X86 processor.
Therefore, although an unconditional jump is only five bytes on a 32-bit
architecture, the instructions being overwritten may have a different length.
Inline function hooking becomes extremely difficult to detect if the jump is
embedded deeply in the target function. Complicating matters further, the
destination of the jump may be nondeterministic except at the moment of
execution. A clever piece of spyware has the full breadth of the assembly lan-
guage and all of its potential permutations within which to hide.

Managing the Threat: Spyware Detection 

There are a number of commercial and freeware spyware detection tools
available. Like most things free, some of them are better than others. We
found BHO Demon very useful in detecting and disabling BHOs in Internet
Explorer.5 It installs a service on the local machine to watch for future
attempts to inject BHOs into Internet Explorer. Spybot Search & Destroy
was also very useful during our research.6 It not only detects BHOs, but
additionally detects and removes other forms of spyware and adware. 



14 ; L O G I N : V O L . 2 9 , N O . 6

S P Y WA R E  D E TE C TI O N  C H A L L E N G E S

Current spyware detection tools are primarily based upon signature scan-
ning techniques. Signature scans have been used heavily by antivirus (AV)
engines and are quite reliable for detecting known strains of spyware. Unfor-
tunately, they are ineffective against unknown strains, which must first be
caught, analyzed, and sampled for a usable signature. With new spyware
variants emerging almost daily, it is difficult for detection engines to keep
pace. Indeed, there are even a handful of spyware applications which utilize
a rudimentary form of polymorphism to randomize their file names and reg-
istry keys, so that every infected machine contains a slightly different ver-
sion of the program. This makes it more difficult for a detection program to
obtain a consistent signature for the application. Some detectors have
turned to heuristics to deal with these issues. A further problem with cur-
rent detections lies in the fact that many of them run in user mode right
alongside the spyware applications they are attempting to apprehend. Using
the aforementioned hooking techniques, a malicious spyware application is
capable of intercepting the function calls of a user mode detection engine as
easily as it hijacks the user’s Internet browser. In this manner, clever spyware
may trick the detector into believing the machine is uninfected. A detection
engine implemented in kernel mode will provide defense against this attack
as long as spyware remains a mostly user mode phenomenon. 

V I C E

VICE is a freeware tool designed to detect hooks.7 It is based upon heuristic
analysis of hooking behaviors rather than exact signatures. The benefit of
this approach is that VICE is capable of pinpointing suspicious activity
related to previously unknown rootkits or spyware. It is implemented as a
stand-alone program capable of analyzing both user mode applications and
the operating system. VICE checks the address space of every application
looking for IAT hooks in every DLL that those applications use. It also
checks the kernel SCT for function pointers that do not resolve to
ntoskrnl.exe and the IRP major function tables for a list of user defined driv-
ers. A user can add devices to this list by editing the driver.ini file. Inline
function hooks are detected in DLL functions imported by applications, as
well as in the kernel SCT functions themselves. When possible, VICE will
display the full path on the file system of the DLL or device driver doing the
hooking, so that a system administrator can examine and remove the mali-
cious software. It should be noted, however, that VICE is not an end-user
spyware detection and removal tool. Some legitimate applications such as
firewalls and antivirus products also use these techniques to filter and exam-
ine data, so an operator of VICE will need to have experience enough to rec-
ognize those cases. As stated previously, many current spyware applications
are immature and do not utilize advanced hooking techniques. Neverthe-
less, as spyware evolves, VICE stands to become an increasingly useful tool,
as it has proved to be in the battle against Windows rootkits. Today, VICE
will detect most publicly known Windows rootkits and any spyware that
currently uses these more intrusive hooking technologies. To run VICE, the
host machine must have the Microsoft .NET Framework installed, which is
free for download. 

Conclusion

We hope to advance VICE as rootkit and spyware techniques continue to
evolve. The sophistication of the disassembly engine logic can be improved

 



; LO G I N : D E C E M B E R  2 0 0 4  S E C U R IT Y: S PY WA R E  A N D  RO OTK ITS 15

to identify more complex and/or deeply embedded inline function hooks. In
future versions, VICE will become more of an active forensics tool, with
enhanced capabilities for detecting anomalous registry accesses, file
accesses, and network communications on systems suspected of being com-
promised. Although it is still an open-ended topic of research, host-based
systems tend to have a better understanding of their environment than do
Network Intrusion Detection Systems (NIDS). This translates into an advan-
tage for heuristic systems like VICE that rely on their ability to differentiate
between “normal” and “abnormal” behaviors.

Spyware has become a threat to corporate and personal information security.
With the combined goals of data interception and stealth, a spyware applica-
tion is well suited to leverage both trojan and rootkit technologies. Although
current spyware lacks the sophistication of modern rootkits for hiding its
presence on a system, we can expect that to change with the advent of more
advanced detection and removal tools. In the next generation of spyware we
expect to see more complex hooking, polymorphic techniques, and kernel
mode components. By understanding the potential application of rootkit
stealth techniques to spyware, hopefully we will be better prepared to meet
the coming challenges in detection and removal.

R E F E R E N C E S
1. Websense, “Emerging Internet Threats Survey 2003”: http://www.websense.com/com-
pany/news/research/Emerging_Threats_2003_EMEA.pdf.

2. CoolWebSearch: http://www.coolwebsearch.com.

3. Matt Pietrek, “Inside Windows: An In-Depth Look into the Win32 Portable Executable
File Format.” MSDN Magazine, vol. 17, no. 2 (February 2002).

4. ZoneAlarm Pro: http://www.zonelabs.com.

5. BHO Demon: http://www.definitivesolutions.com/.

6. Spybot Search & Destroy, by Patrick M. Kolla: http://www.safer-networking.org/.

7. VICE, by James Butler, HBGary Inc.: http://www.rootkit.com/vault/fuzen_op/vice.zip.




