
E L I O T L E A R

being awash in
keys
A member of the USENIX community since 1988,
Eliot Lear works for Cisco Systems, Inc., and has
been their self-proclaimed corporate irritant
since 1998. He’s been a consumer a bit longer.

lear@cisco.com

T O D AY ’ S C O N S U M E R M U S T K E E P T R A C K
of many passwords in order to make use of
online banking, commerce, and government
services. Attempts to consolidate authenti-
cation methods into a single sign-on service
have thus far failed. Worse, with viruses,
spam, and phishing, more sophisticated
authentication is demanded. That sophisti-
cation today has brought confusion to the
consumer. What stops the consumer from
having a single secure password? This article
considers several areas of improvement the
industry should consider, and we’ll put forth
an example of a single smartcard that could
potentially provide unified authentication.

A (Very) Brief History of Success

The enterprise has largely been successful at consoli-
dating identity. This evolution began with common
host access through mechanisms such as Kerberos.1

Common network access was then made possible
through protocols and mechanisms such as TACACS
and RADIUS.2 Application integration is now follow-
ing as directory services evolve. All of this is great for
the enterprise, because with a single administrative
function tied to a registrar or human resources func-
tion, it is possible to enable or disable a user, change
user rights, and retrieve a log of user activity. This suc-
cess has been made possible by a vested interest in
consolidating administrative overhead costs. Unfor-
tunately, not only are most of the mechanisms devel-
oped for the enterprise inappropriate for consumer
authentication, but those products actually contribute
to the individual’s inconvenience. What does the con-
sumer need? What is necessary for the e-commerce
vendor?

The Phishing Example

Today most US banks use simple username/password
security with one-way SSL authentication and encryp-
tion.3 Put another way, the bank server authenticates
itself to the user’s browser, and in return the user sends
a username and password through a form to authenti-
cate himself or herself to the server. From a protocol
standpoint, this method provides mutual authentica-
tion. It breaks down, however, at the user interface
level. Published reports of US bank losses range from
$500 million to $1.2 billion last year, while British
banks lost over £1 billion.

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: B E I N G AWA S H I N K EYS 45

46 ; L O G I N : V O L . 2 9 , N O . 6

In order to stem the losses, some banks have attempted
to up the ante by requiring sophisticated challenge-
response systems. Even these systems, however, are
not impervious to attack. Consider the case in which
the masquerader receives from a potential victim a
username necessary for generating a challenge, sends
the username to the real bank, parses the challenge,
and then sends it back to the victim. In other words,
these miscreants are able to effect a classical man-in-
the-middle attack, all because the user didn’t bother to
click the little lock icon in his browser to verify that
the certificate was correct. Worse, most people don’t
know what the correct certificate would look like.

This same bank might want to raise the stakes further
by attempting to make the challenge readable only to
humans (and perhaps just barely at that). Unfortu-
nately, the same technology used by spammers and
phishers is also used by legitimate screen readers for
those who are visually impaired.

One approach to solve this problem is to make use of
public/private key pairs in the smartcards. There are
many methods to choose from, but the key point is
finding where the line of trust begins and ends. SANS
infection statistics claim that the average survival time
of an unpatched Windows PC is 19 minutes.4 Clearly
the PC is not to be trusted. This means that the point
of trust must be the smartcard itself, and that it must
maintain an opaque channel through the PC to the
authentication system on the other side.

Multiply the single bank login by investment houses,
health insurance, travel sites, bookstores, telephone
companies, not to mention an employer, so that in
order to retain convenient access one needs a whole
bag of hardware and a whole slew of login names.
Instead, wouldn’t it be nice if the user could make use
of one or more identities to authenticate against any
particular service?

Privacy concerns also abound. Any solution in this
space will have to come to grips with the idea that ven-
dors may wish to sell information about consumer
identities. While some jurisdictions, such as the Euro-
pean Union, provide strong controls for consumers,
others, such as the US, do not. Such correlation of
information is difficult to prevent, in part thanks to
HTTP and cookies. While it is unlikely that any solu-
tion in this space could help consumer privacy, one
wishes not to add to the problem.

“Many Have Tried”

There have been several attempts at providing individ-
uals with unique identities that could be used for
commerce. The reasons they have failed are complex,

including implementation limitations, trust of the
provider, vendor costs, and competitive concerns. As
we’ve seen, a software implementation leaves a tremen-
dous amount to be desired. Any solution in this prob-
lem space must be widely accepted by both consumers
and vendors, thus requiring that the needs of both be
met. Inasmuch as credit card companies indemnify
consumers from identity theft, they too have skin in
this game.

There exist a number of standards in this space already.
A plethora of ITU (International Telecommunication
Union) standards define the interface between smart-
cards, computers, and identities. SASL, SSL, and TLS
provide a means of transporting authentication over
the network, and Mozilla provides a way to use hard-
ware tokens. However, none of these standards has
established a sufficiently trustworthy path between the
smartcard and the server on the other end. In short,
because everyone wants to be king of the mountain,
nobody has been able to ascend.

Getting to a Secure Single Password

Reviewing our discussion, we can begin to see the
form of a solution and can derive some requirements.
Here, then, are mine:

■ First, while a beautiful dream to some, a PKI
deployed globally to all consumers has not hap-
pened yet, and there is no reason to believe condi-
tions will change. Therefore, a solution should not
rely on such a concept.

■ No single vendor can own the market. Anyone
playing King of the Mountain will be King of the
Molehill. This implies use of open standards from
the authenticator to the server, inclusively.

■ The mechanism must be easy to use.
■ The mechanism must handle multiple identities.
■ The mechanism must be secure, not only from the

network but from the host computer itself. This
includes the computer keyboard!

■ Finally, the mechanism must not cost an arm and a
leg. We consumers are price-conscious!

With these requirements in mind, let’s take a look at a
straw man.

A Straw-Man Solution

What follows is not a complete answer to all consumer
concerns. It is submitted for purposes of discussion.

Posit a smartcard with a small LCD display and a key-
pad (or other accessibility mechanisms) whose pur-
pose is merely to provide mutual authentication for

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: B E I N G AWA S H I N K EYS 47

any single transaction. The interface between this card
and a host computer would likely be USB, due to
power concerns.

Each service will have its own identity, which will con-
tain the following fields:

■ A name that is a randomly generated 2048-bit
number

■ A nickname supplied by the service
■ A 128-bit serial number
■ A 2048-bit public/private key pair

The card will have the following functions:

■ longlonglong createIdentity(char
*nickname, int *serial, char *pub-
lic)

■ confirmIdentity(longlonglong name,
char *cryptext)

These functions are called not by the host computer
but by the remote server. They are only accessible if
and only if the user confirms them on the smartcard
itself.

Let us assume that the identity with the nickname of
“Joe Blow’s Bookstore” exists with a name of N and a
serial number of S. When I connect to Joe Blow’s Web
site and want to authenticate a transaction, it will call
the function confirmIdentity(). cryptext will
be encrypted in the previously generated public/
private key pair and will contain the next expected
serial number and a comment indicating the nature of
the transaction. Assuming that there is such a name on
my smartcard and the cryptext is decrypted prop-
erly, if the serial number is correct, both it and the
comment will be displayed on the smartcard, along
with the nickname. If all looks correct to me, I push
the green button. If it looks incorrect, I either do noth-
ing or push the red button. Similarly, the card should
report all failed access attempts.

What has this accomplished? First and foremost, no
more passwords are sent on the wire—encrypted or
not. Second, I no longer rely on the host computer for
security. Third, I may store as many identities as I wish
in as many smartcards as I wish. Fourth, no individual
vendor can share an identity in such a way that a third
party could make use of it for purposes of authentica-
tion without me knowing about it. Finally, no remote
server will be able to guess even the mere existence of
other identities on the card. Other authorized parties
may tell them about them, but if they try to access the
identity, I’ll know something fishy is going on. Note
that X.509 certificates are not needed for the common
usage case.

What happens if someone other than Joe Blow’s Book-
store tries to use the nickname for Joe Blow’s book-

store? When the user is asked to create the new iden-
tity when he is not at Joe Blow’s Bookstore, he should
notice that something is wrong. However, even if he
does create a new identity that has the same nickname,
all this phisher has access to is its own fictitious iden-
tity and not the real Joe Blow’s, because the names will
differ.

The tricky part is in createIdentity. As with any
authentication system, the weakest part is always in
the bootstrapping process. Here the risk is that some-
how the computer or other device between the card
and the authentication server might eavesdrop or oth-
erwise perform a man-in-the-middle attack. In order
to protect against such a thing, that path must be en-
crypted. For this use only, a certificate may be war-
ranted. However, one needs signed certificates for the
server and for the card, not for the individual. The
server just needs to verify that the endpoint is a suffi-
ciently secure card.

Another approach would be to use out-of-band infor-
mation, although we run the risk of having the same
accessibility problems mentioned earlier. For instance,
the user could enter the ID, as well as the serial num-
ber, directly on the card. This method is cumbersome
to the user.

The astute observer will note that there is no method
to list identities. Such a function should be considered
dangerous, because if the authorized user can execute
it from the host computer, then so might someone else.
If such a listing is displayed, it should be displayed on
the card itself.

Conclusion

There are numerous problems with the straw man
above. The goal of the exercise was to provide some
idea of what standards are needed and which aren’t
needed (X.509 for most transactions), and to demon-
strate the sort of user interface that is required. An
open standard is needed to exchange authentication
information all the way from the card to the authenti-
cation server and back again.

Enterprises have an interest in this sort of solution as
well, since solving the problem in the consumer space
brings with it the consumer market’s economies of
scale. Tokens are already pretty cheap. Having to man-
age them, however, has been another matter entirely.
That, too, could be addressed with such a solution.

The hardest part of this problem remains the registra-
tion of identities. In this limited sense, use of a PKI
may be justified.

48 ; L O G I N : V O L . 2 9 , N O . 6

One limitation of my approach is that it doesn’t easily
allow for consolidation of credit cards, which are noth-
ing more than keys themselves. Because identities are
kept secret on the smartcard and are selected by the
authorizing party, there is no way for the user to spec-
ify authorization of a charge on a particular account.

N OTE S

1. S. Miller et al., “Kerberos: An Authentication Service for
Open Network Systems,” Proceedings of the USENIX Winter
Conference1988 (February 1988), pp. 191–202.

2. C. Rigney et al., “Remote Authentication Dial-In User Ser-
vice (RADIUS),” RFC 2865 (June 2000); W. Yeong et al.,
“X.500 Lightweight Directory Access Protocol,” RFC 1487
(July 1993).

3. A. Frier et al., “The SSL 3.0 Protocol,” Netscape Communi-
cations Corp. (November 18, 1996).

4. The SANS Institute, “Survival Time History” (August
2004): http://isc.incidents.org.

