
S T E V E N A L E X A N D E R

improving security
with homebrew
system
modifications
Steven is a programmer at Merced College. He has
been using FreeBSD since version 2.2.6 and still loves
it.

alexander.s@mccd.edu

I N T H I S A R T I C L E I D I S C U S S T H R E E
modifications I’ve developed for FreeBSD.
The first modification is a variant of the
MD5-crypt mechanism, which uses an
increased number of iterations in the inter-
nal loop of the crypt function. It also hashes
in a constant string during the first iteration
of the core loop. Increasing the number of
iterations causes password hashing to re-
quire more computation time. This should
not significantly impact most systems be-
cause they don’t spend much of their time
authenticating users. An attacker, on the
other hand, wants to be able to guess mil-
lions of possible passwords per second. The
attacker’s efforts can be severely impacted.
The constant string helps to prevent the use
of standard password-cracking tools.

Another modification that I’ve developed is for the gcc
compiler (version 2.9.5) as distributed with FreeBSD
4.8–4.10. This modification should work on other
operating systems. The change I’ve made adds two new
compile-time options to gcc. One option randomly
adds up to 1 megabyte to the stack size of the function
main(). The other option adds up to 16KB to the stack
size of all functions. The first option is enabled by
default. The second option is disabled by default and
should be used very sparingly as it can have severe
consequences in the way of wasted memory. Changing
the stack layout of a program can defeat many buffer
overflow exploits. This technique was introduced by
researchers at the University of New Mexico.1 An
attacker who can tailor tools for your system will be
able to defeat this defense.

More advanced randomization techniques than those
used by Forrest et al. have been developed.2 Run-time
randomization of a program’s memory layout is
stronger but can have negative performance conse-
quences. Load-time stack randomization is also
stronger, since it is dynamic, and is currently available
in RedHat Linux, OpenBSD, and PaX. I’ve included a
patch, below, to add load-time stack randomization to
FreeBSD.

For more information on buffer overflows and protec-
tion mechanisms, see the SmashGuard buffer overflow
page at Purdue University.3 More advanced memory
randomization and protection measures are available
with PaX and OpenBSD.4

The crypt modification provides hard security in that
the increase in difficulty for an attacker to mount an

26 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: I M P ROV I N G S E C U R IT Y W ITH H OM E B R E W M O D I F I C ATI O N S 27

offline password guessing attack is absolute as long as no serious cryptanalytic
breakthrough is achieved against MD5-crypt. It also provides a soft measure of
security through obfuscation. The modified crypt mechanism will be incompati-
ble with other systems and standard password-cracking tools. A knowledgeable
attacker can modify his or her tools to suit your system and try an offline attack,
even though, because of the increased computation time, it will be less likely to
succeed. Attackers who do not understand the need to modify their tools or are
unable to do so will have no chance of success.

The security provided by load-time stack randomization is much more solid
than that provided by compile-time randomization. In the latter case, an exploit
simply needs to be tailored to a given system to work on that system. The reason
it is useful is that many attackers don’t have the skills or access to a particular
target system needed to tailor an exploit to that system. On the other hand, load-
time randomization introduces the property that many exploits will not work
except by brute force, even if the attacker has access to the compiled program.

Most attackers are not expert programmers or security gurus, but tend to be kids
or disgruntled employees (current or former). These attackers depend on tools
that are developed by more skilled programmers. The programmers who write
these tools make assumptions about the conditions of the target system. If these
conditions do not hold, the tools will fail. This enables us to use both diversity
and randomization for positive gain.

Randomizing Stack Sizes (Compile-Time)

In order to make gcc add a small random buffer to the top of a function’s stack, I
read in a 32-bit number from arc4random() and mask it to get the size I want.
I then modify the frame offset in init_function_start by that many bytes
and use two new compiler flags that control whether to modify main() and/or
all other functions. The flags can be invoked using -f[no-]randomize-
stack-main and -f[no-]randomize-stack-all. The latter is disabled by
default. Several machines have been rebuilt with this patch in place and have
been running without any problems for several months. I’m also running ProPo-
lice/SSP on some of these machines and have not had any problems.5 Use ProPo-
lice (or StackGuard)—you’ll be happier for it. If I’ve done anything taboo, I
hope some of the gcc experts out there will clue me in. The gcc source lives in
/usr/contrib/gcc .

function.c

In function.c, init_function_start requires modification. Changes are
shown in bold.

. . .

void

init_function_start (subr, filename, line)

tree subr;

char *filename;

int line;

{

int random_dword = 0;
. . .

/* We haven’t had a need to make a save area for ap yet.

*/

arg_pointer_save_area = 0;

/* No stack slots allocated yet. */

28 ; L O G I N : V O L . 2 9 , N O . 6

if(flag_randomize_stack_all ||
(flag_randomize_stack_main && \

(strcmp(current_function_name,”main”)==0)))
{

random_dword = arc4random();
if(strcmp(current_function_name,”main”)==0)

random_dword = random_dword & 0x000ffffc;
else

random_dword = random_dword & 0x00003ffc;
#ifdef FRAME_GROWS_DOWNWARD

frame_offset = -random_dword;
#else

frame_offset=random_dword;
#endif

}
else /* no randomization */
{

frame_offset = 0; /* Original code. If you
keep an extra frame_offset = 0,
the code won’t work. */

}

flags.h

The following entries must be added to the end of flags.h:

. . .
/* Nonzero means use stack randomization for main() */
extern int flag_randomize_stack_main;
/* Nonzero means use stack randomization for all functions */
extern int flag_randomize_stack_all;

toplev.c

These flags are then defined and set in toplev.c:

. . .

int flag_no_ident = 0;

/* Nonzero means randomly increase the stack space used
by main by up to 1 megabyte */

int flag_randomize_stack_main = 1;
/* Nonzero means randomly increase the stack space used

by all functions */
int flag_randomize_stack_all = 0;

. . .

{“ident”, &flag_no_ident, 0,
“Process #ident directives”} ,

{“randomize-stack-main”, &flag_randomize_stack_main, 1,
“Enable stack randomization for main” },

{“randomize-stack-all”, &flag_randomize_stack_all, 1,
“Enable stack randomization for all functions” }

};

To rebuild gcc you should:

1. cd /usr/src/gnu/usr.bin/cc
2. make obj
3. make depend
4. make all install

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: I M P ROV I N G S E C U R IT Y W ITH H OM E B R E W M O D I F I C ATI O N S 29

Afterwards, gcc will pad the stack for main() on all newly compiled programs by
default. This can be turned off by using the option -fno-randomize-stack-main.
Optionally, padding can be used on all functions by specifying -frandomize-
stack-all. This flag can impose a very large overhead, particularly on programs
that use recursive functions. Enable it at your own risk.

The entire system can be recompiled using stack padding (for main() only) by:

1. cd /usr/src
2. make buildworld
3. make buildkernel
4. make installkernel
5. reboot
6. make installworld
7. reboot

Randomizing Stack Sizes (Load-Time)

I have also implemented load-time stack randomization by modifying
/usr/src/sys/kern/kern_exec.c. The changes are minor and similar to those used
in the gcc patch. In exec_copyout_strings, the vectp pointer, which
becomes our stack base, is modified. This modification has been tested on
FreeBSD 4.8–4.10 and 5.2.1.

This feature can be defeated by brute force or possibly in conjunction with a for-
mat string attack. In the case of brute force, the process is noisy and the attack
can be stymied using techniques such as those in SegvGuard for Linux.6 Unfor-
tunately, such a tool is not currently available for FreeBSD. Still, load-time ran-
domization is more difficult to defeat than compile-time randomization, as it is
dynamic and an attacker must brute-force the stack addresses rather than simply
analyzing the binary. Format strings can be used to defeat this technique but
only under particular circumstances.

. . .

#include <sys/libkern.h>
. . .

register_t *

exec_copyout_strings(imgp)

struct image_params *imgp;

{

. . .

/* local variables */

. . .

int random_offset;
. . .

/*

* The ‘+ 2’ is for the null pointers at the end of each

of the arg and env vector sets

*/

vectp = (char **)

(destp - (imgp->argc + imgp->envc + 2) *

sizeof(char*));

random_offset = arc4random();
random_offset = random_offset & 0xffffc;
vectp-=random_offset;

The kernel needs to be rebuilt to use the new changes:

1. cd /usr/src
2. make buildkernel

30 ; L O G I N : V O L . 2 9 , N O . 6

3. make installkernel
4. reboot

Creating a New Crypt Mechanism

A few months ago, I was re-reading parts of Practical UNIX and Internet Security7

and noted the authors’ suggestion that system administrators modify the crypt
routine on their UNIX systems to loop more than the standard 25 times, in order
to prevent attackers from using a standard password cracker. I decided to imple-
ment this on some of my systems. This modification works on FreeBSD 4.8–4.10
and 5.2.1. The existing source code for 5.2.1 looks slightly different, but the
changes are the same.

If I were simply to change the existing source code and recompile, all the ac-
counts on my systems would stop working. That is why FreeBSD allows new
crypt mechanisms to be added without replacing the original mechanisms. All
new passwords are hashed using the mechanism that is configured in login.conf.

Rather than modify the old DES-based crypt mechanism, I modified a copy of
the MD5-based crypt mechanism, which is much stronger. MD5-crypt was
designed by Poul-Henning Kamp and uses Ron Rivest’s MD5 hash algorithm.8 I
do not suggest arbitrarily modifying the crypt mechanisms unless you have real
cryptographic expertise, as you may inadvertently weaken the algorithm. I have
only increased the number of iterations of the algorithm and hashed in a con-
stant value; everything else is intact.

Passwords that are hashed on your system using the new crypt mechanism will
not be breakable with an unmodified password cracker. To make the job of an
attacker more difficult, back up and remove the libcrypt source code from your
servers after the new libcrypt has been installed. An attacker can still analyze the
binary code to find out how it was modified, but many attackers do not have
these skills. If an attacker is unable, or unknowingly neglects, to do this, his or
her offline attack will not succeed.

On FreeBSD and many other systems, non-root users are not able to see the
stored password hashes. These hashes are still valuable to an attacker. Many
attackers copy the password file after a break-in so that the passwords can be
tried on related systems to which the attacker does not have access or reused on
the same system if the hole the attacker used to break in is patched.

Adding a new crypt mechanism to FreeBSD turns out to be pretty easy. The
source for libcrypt is located at /usr/src/lib/libcrypt. Three files need to be
changed to create a new mechanism: crypt.c, crypt.h, and Makefile. A file must
also be created that contains your new mechanism.

crypt.h

The header file crypt.h contains the prototypes for the different crypt mecha-
nisms. You can name your new mechanism whatever you like; mine looks like
this:

. . .

char *crypt_md5_local(const char *pw, const char *salt);

. . .

crypt.c

crypt.c contains a data structure named crypt_types that contains the name
of the mechanism, the function to call to use the mechanism, and the magic
value that is prepended to passwords that use this mechanism. My entry to the
list looks like:

. . .

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: I M P ROV I N G S E C U R IT Y W ITH H OM E B R E W M O D I F I C ATI O N S 31

{

“md5local”,

crypt_md5_local,

“4”

},

{

NULL,

NULL

}

. . .

crypt-md5-local.c

In order to create a new crypt mechanism, I copied the file crypt-md5.c to crypt-
md5-local.c. You must modify the new file slightly. Rename the function
crypt-md5 to crypt-md5-local. Near the beginning of the function, the
magic value should be changed from 1 to 4. The magic string 3 is not
used in FreeBSD 4.x but is used in FreeBSD 5.x for the NT hash algorithm. Your
changes should look like this:

. . .

char *

crypt_md5_local(pw, salt)
const char *pw;

const char *salt;

{
static char*magic = “4”; /*

* This string is magic for
* this algorithm. Having
* it this way, we can get
* better later on.
*/

. . .

Further down in the code, a for loop iterates 1000 times to form the core of the
MD5-crypt mechanism. You can replace the value 1000 with anything you like.
Increasing the number significantly will make password cracking very difficult;
however, increasing it too much could slow the system unnecessarily. If, for
some reason, you need password database information to be interoperable on
multiple systems, each system will need to use the same value in its modified
crypt mechanism. Here, I have changed the number to 8000. I also have hashed
in the constant string mercedcollege; this prevents an attacker from perform-
ing an offline password cracking attack without modifying his or her tools to
suit. Modify this string to something of your own choosing.

. . .

for(i=0;i<8000;i++) {
MD5Init(&ctx1);

if(i==0)
MD5Update(&ctx1,”mercedcollege”,strlen(“mercedcol-

lege”));
if(i & 1)

MD5Update(&ctx1,pw,strlen(pw));

. . .

32 ; L O G I N : V O L . 2 9 , N O . 6

Makefile
The name of the file that contains your new crypt mechanism must be included
in Makefile:

SRCS= crypt.c crypt-md5.c crypt-md5-local.c md5c.c
misc.c

/etc/login.conf

After these changes are made be sure to make and make install.
/etc/login.conf can be modified to use this new method as the default. The entry
should look like:

:passwd_format=md5local:\

Afterwards, you must run cap_mkdb /etc/login.conf.

To install the new libcrypt:

1. cd /usr/src/lib/libcrypt
2. make
3. make install
4. reboot

R E F E R E N C E S
1. S. Forrest, A. Somayaji, and D. Ackley, “Building Diverse Computer Systems,” Proceed-
ings of the 6th Workshop on Hot Topics in Operating Systems (1996): http://www.cs.unm
.edu/~immsec/publications/hotos-97.pdf.

2. Monica Chew and Dawn Song, “Mitigating Buffer Overflows by Operating System
Randomization,” Tech Report CMU-CS-02-197 (December 2002); PaX, http://pax
.grsecurity.net/.

3. See https://engineering.purdue.edu/ ResearchGroups/SmashGuard .

4. See http://pax.grsecurity.net/, http://www.openbsd.org.

5. Hiroaki Etoh, “ProPolice: GCC Extension for Protecting Applications from Stack-
Smashing Attacks,” IBM (April 2003): http://www.trl.ibm.com/projects/security/ssp/.

6. Nergal, “The Advanced return-into-lib(c) Exploits: PaX Case Study”:
http://www.phrack.org/phrack/58/p58-0x04.

7. Simson Garfinkel and Gene Spafford, Practical UNIX and Internet Security (Sebastopol,
CA: O’Reilly, 1996).

8. Ron Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321 (April 1992).

