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I T  WA S  A R O U N D  2 : 4 5  A . M . O N E  S U M M E R
night in 2002 and I had finally finished. My
shiny new Linux system was fully installed
and connected to my broadband cable
modem connection in my apartment. All
unnecessary services had been turned off, a
restrictive iptables policy had been deployed,
and a tripwire filesystem snapshot had been
taken, all before connecting the system to
the network.

Reasoning that the only servers I needed to have acces-
sible from arbitrary IP addresses around the Net were
Apache and OpenSSH, iptables could be configured to
log and drop almost all connection attempts. After
connecting the system to the network and scanning it
from a shell account on a different external network, I
saw that only TCP ports 22, 80, and 443 were accessi-
ble, so I was satisfied that my system was fit to remain
connected.

It was late, though, and I forgot one important detail. I
neglected to check the version of OpenSSH that came
bundled with the Linux distribution. Back then Red-
Hat 7.3 was my Linux distribution of choice even
though more recent versions of RedHat (and other
Linux distributions) were available. After getting some
well-deserved sleep, I woke the next morning only to
find that, sure enough, my system had been compro-
mised. Luckily, I had no important data on the box yet,
but it could have been a lot worse.

It became clear that in addition to upgrading to the lat-
est version of sshd, it would also be desirable to protect
sshd as much as possible with iptables. Yet at the same
time, the ability to log in remotely and administer the
system from anywhere was highly desirable. Unfortu-
nately, these two goals are fundamentally at odds. Sure,
sshd does not allow just anyone to log in or execute
commands; users must have the proper authentication
credentials for at least one type of authentication
method supported by sshd (username/password, RSA,
Kerberos, etc.), but all of this may not help if there is a
buffer overflow vulnerability (as in my case) buried
within a section of the sshd code that is accessible over
the network.

An attacker may only need the capability of connecting
to sshd in order to be in a position to exploit such a
vulnerability. Being able to connect means the attacker
can send packets up through the server’s IP stack,
establish a TCP session with the transport layer, and,
finally, talk directly to sshd. Alternatively, if iptables
does not allow the attacker’s IP to connect to sshd,
then any packets sent from the attacker are blocked by
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iptables before they even make it into the IP stack in the Linux kernel, let alone
to the SSH daemon itself.

Clearly, the most desirable way to protect an arbitrary service is with iptables.
However, since not all IP addresses that should be allowed to connect to sshd
can be enumerated a priori, I would need to add an additional authentication
layer to iptables. Port knocking provides a simple but effective solution to this
problem.

Port Knocking

Port knocking1 provides a method of encoding information within sequences of
connection attempts to closed (or open) ports. The most common application of
such information (which can include IP addresses, port numbers, protocols,
usernames, etc.) is the modification of firewall policies or router ACLs in
response to monitored valid port knock sequences. In essence, port knocking
provides a means of network authentication that only requires the ability to
send packets that contain transport layer headers.

Knock clients do not need to actually talk to a server-side application or even
have a TCP session established; the knock server can behave completely pas-
sively as far as network traffic is concerned. On the server side, knock sequences
can either be monitored via firewall log messages or with a packet capture
library such as libpcap, in the same way an IDS watches traffic on a network.
Although using a packet capture library would provide the ability to encode
information such as a password at the application layer, a full-featured port
knock implementation is completely feasible without using any packet data
above the transport layer—hence firewall logs are ideally suited for this applica-
tion. Implementing a port knocking scheme around firewall logs has the added
bonus of helping to ensure the firewall is configured correctly, or at least that it
is logging packets.

Protecting Against Replay Attacks

It should be noted that many port knocking techniques are susceptible to replay
attacks if an attacker is in a position privileged enough to be able to sniff traffic
between the port knock client and server. An attacker need only replicate a
knock sequence for the server to grant the same level of access that would be
granted to a legitimate client. Hence some would argue that port knocking suf-
fers from the standard arguments against “security through obscurity.” However,
port knocking is not designed to act as the only security mechanism for secure
communications; encryption implemented by sshd serves as the main line of
defense. Port knocking provides an additional layer of security on top of the
secure communications already implemented by sshd. The argument against
“security through obscurity” is only valid if security is completely dependent on
obscurity.2 In addition, there are several techniques for raising the bar for the
attacker even if the entire sequence has been observed on the wire. Let us exam-
ine four such techniques:

1. Relative timings between sequence packets can be made significant. For
example, the knock server may require that the minimum time delay
between successive knock sequence packets is at least three seconds, but not
longer than six seconds.

2. Multiple protocols (TCP, UDP, and ICMP3) can be used within the knock
sequence. If an attacker has restricted the view of a sniffer to just, say, the
TCP protocol, then some portion of such a sequence will be missed and
hence cannot be replayed on the network.
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3. Encryption can be used. Due to the fact that an IP address, a protocol num-
ber, and a port number together only require seven bytes of information to
represent, it is easy to use a symmetric block cipher (such as the Rijndael
algorithm) to encrypt port knock sequences before they are sent across a
network. Encrypting an IP address within a knock sequence allows a knock
client to instruct a knock server to allow access for a third-party IP address
that cannot be guessed by anyone observing the knock sequence. As usual,
use of a symmetric encryption algorithm requires a shared key that is known
to both the knock client and the knock server. There are also fancier meth-
ods of using encryption, such as one-time passwords,4 that genuinely make
replay attacks infeasible.

4. Requirements can be made on the type of operating system that generates a
knock sequence. Additional fields in the IP and TCP headers—TTL values,
fragment bits, overall packet size, TCP options, TCP window size, etc.—can
be made significant. If a knock sequence is monitored between a client and
server, then any duplicated sequence will not be honored by the server
unless the OS of the duplicate sequence exactly matches that of the original
client. For example, if a knock sequence between two Linux machines is
sniffed off the wire and an attacker replays the sequence from a MacOS X
machine, the duplicate sequence will be ignored. Of course, OS characteris-
tics can be spoofed by the attacker, but this may not be worth the trouble
(again, although this is not unbreakable, port knocking adds an additional
layer of security).

Fwknop

This article discusses a tool called fwknop (Firewall Knock Operator), which
supports both shared and encrypted port knock sequences along with all four of
the obfuscation techniques mentioned above. fwknop exclusively uses iptables
log messages to monitor both shared and encrypted knock sequences instead of
appealing to a packet capture library. In addition, due to the completeness of the
iptables logging format, fwknop is able to passively fingerprint operating sys-
tems from which connection attempts originate. fwknop uses this capability to
add an additional layer of security on top of the standard knock sequences by
requiring that the TCP stack that generates a knock sequence conform to a spe-
cific OS. This makes it possible to allow, say, only Linux systems to issue a valid
knock sequence against the fwknop knock server. I develop and release fwknop
as free and open source software under the GNU Public License (GPL); fwknop
can be downloaded from http://www.cipherdyne.org/fwknop/.

I M P L E M E NTATI O N

Firewall logs, especially those created by iptables, can provide a wealth of infor-
mation about port scans, connection attempts to back door, DDoS programs,
and attempts by automated worms to establish connections to vulnerable soft-
ware. One of the most important characteristics of firewall logs is that packets
can be logged completely passively; the firewall is under no obligation to allow
the target TCP/IP stack to generate any return traffic in response to a TCP con-
nection attempt. Yet, at the same time, all sorts of juicy bits of information can
be logged from a connection attempt, such as TTL and IP ID values, source and
destination port numbers, TCP flags, TCP options, and more. (Note that UDP
and ICMP packets will generate iptables log messages that contain information
appropriate to those protocols.)

fwknop parses iptables log messages that are sent to syslog as iptables intercepts
packets that traverse the firewall interfaces. By default, iptables logs packets via
the syslog kern facility at a priority of info. Such messages are usually sent to
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the file /var/log/messages, but fwknop reconfigures syslog to also send kern.info
messages to a named pipe, where they are read by fwknop. Let us examine an
iptables log message generated by the following iptables rule:

iptables -A INPUT -p tcp -i eth0 -j LOG —log-tcp-options

A TCP syn packet to port 60000 on the eth0 interface will result in the following
log message logged via syslog to /var/log/messages:

Iptables does a good job of decoding packet information before sending it to sys-
log. Clearly displayed (among other things) are source and destination IP
addresses, packet length and TTL values, source and destination ports, TCP
window size, and TCP flags. The TCP options portion of the TCP header is also
visible, but because decoding it would place an undue burden on the kernel,
only the raw options data is logged. In an effort to passively fingerprint the
operating system that generated the above log message, fwknop uses a strategy
similar to p0f,5 which is one of the best passive OS fingerprinters available. Since
matching a p0f signature against the packet above requires the examination of
specific TCP option values, fwknop must decode the options string. A quick
examination of RFC 793 informs us that there are two formats for TCP options:
three 8-bit-wide fields denoting the option type, length, and value, or a single 8-
bit-wide field denoting the option type. Interpreting these two formats along
with the appropriate TCP option definitions with an eye toward what is required
by p0f, fwknop decodes the options string in the packet above,

020405B40402080A06551B7A0000000001030300,

as the following:

Hence, the packet log message above is matched by the following p0f signature:

S4:64:1:60:M*,S,T,N,W0     Linux:2.4::Linux 2.4/2.6

Now let’s turn to some concrete port knocking examples. The following two
knock sequence examples will involve the execution of fwknop from the com-
mand line in client mode from the source IP 192.168.10.2 to the destination
machine 10.3.2.1, where fwknop is running in server mode. (RFC 1918
addresses were chosen for illustration purposes so as not to step on the toes of
any real networks out there.) In both sequence examples iptables is configured
to block access to sshd on the knock server, but after receiving a valid port
knock sequence, fwknop will reconfigure iptables to allow access to sshd. In
order to indicate clearly how access is modified, connection attempts to sshd on
the knock server will be made from the knock client system before and after
sending the knock sequences. As fwknop receives and parses knock sequences
and modifies access controls, it writes information to syslog, and these messages
will also be displayed below. All command-line invocations of fwknop below
take place on the client system.

S H A R E D  S E Q U E N C E

First let’s examine a shared sequence that involves multiple protocols. Fwknop
supports the use of TCP, UDP, and ICMP echo requests within shared knock
sequences. Shared sequences must be defined in two places: the file ~/.fwknoprc
on the client system, and the file /etc/fwknop/access.conf on the server system.
Hence, our first knock sequence is defined as follows on the server:

Aug  7 17:22:57 orthanc kernel: IN=eth0 OUT=

MAC=00:0c:41:24:68:ef:00:0c:41:24:56:37:08:00 SRC=192.168.10.2 DST=10.3.2.1 LEN=60

TOS=0x10 PREC=0x00 TTL=64 ID=56686 DF PROTO=TCP SPT=32811 DPT=60000 WINDOW=5840 RES=0x00

SYN URGP=0 OPT (020405B40402080A06551B7A0000000001030300)

- Maximum segment size = 5840  - Selective acknowledgment is permitted  - The timestamp

is set  - NOP  - Window scale = 0
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[server]# cat /etc/fwknop/access.conf

SOURCE: ANY;

SHARED_SEQUENCE: tcp/50053, udp/6020, icmp, icmp,

tcp/24034, udp/9680;

OPEN_PORTS: tcp/22;

FW_ACCESS_TIMEOUT: 30;

REQUIRE_OS_REGEX: linux;

The SOURCE keyword defines from which IP address or network a knock
sequence will be accepted (with the special value ANY accepting knock
sequences from any source IP). The SHARED_SEQUENCE keyword defines the
specific port numbers and protocols that constitute a valid sequence. The
OPEN_PORTS keyword defines the set of ports and corresponding protocols to
which the source address should be allowed to connect. Fwknop will reconfig-
ure iptables on the underlying Linux system only upon receiving a valid knock
sequence. The FW_ACCESS_TIMEOUT specifies the length of time (in seconds)
the underlying iptables policy will be configured to accept connections from an
IP address that has issued a valid knock sequence. The REQUIRE_OS_REGEX
variable instructs fwknop to accept a knock sequence if and only if the p0f sig-
nature derived from the originating operating system contains the specified
string (the match is performed case-insensitively).

In the file ~/.fwknoprc on the client system, a similar block of text defines the
same sequence for the fwknop client. Note the specific IP address of the fwknop
server is listed immediately preceding the sequence definition:

[client]$ cat ~/.fwknoprc

10.3.2.1: tcp/50053, udp/6020, icmp, icmp, tcp/24034,

udp/9680

Now for the actual execution of fwknop. First, connectivity to sshd is tested
from the client, then the port knock sequence is sent across the network to the
server, and, finally, an additional connection attempt shows that access has
indeed been granted:

[client]$ telnet 10.3.2.1 22

Trying 10.3.2.1...

[client]$ fwknop -k 10.3.2.1

[+] Sending port knocking sequence to knock server:

10.3.2.1

[+] tcp/50053 -> 10.3.2.1

[+] udp/6020  -> 10.3.2.1

[+] icmp echo request -> 10.3.2.1

[+] icmp echo request -> 10.3.2.1

[+] tcp/24034 -> 10.3.2.1

[+] udp/9680  -> 10.3.2.1

[+] Finished knock sequence.

[client]$ telnet 10.3.2.1 22

Trying 10.3.2.1...

Connected to 10.3.2.1.

Escape character is ‘^]’.

SSH-2.0-OpenSSH_3.8.1p1

On the server the following messages are written to syslog by fwknop as it moni-
tors the port knock sequence in the iptables log:

Aug 8 13:17:46 orthanc fwknop: port knock access sequence matched for 192.168.10.2

Aug  8 13:17:46 orthanc fwknop: OS guess: Linux:2.4::Linux 2.4/2.6 matched for

192.168.10.2

Aug  8 13:17:46 orthanc fwknop: adding INPUT ACCEPT rule for source: 192.168.10.2 to con-

nect to tcp/22

Aug  8 13:18:18 orthanc fwknop: removed iptables INPUT ACCEPT rule for 192.168.10.2 to

tcp/22, 30 second timeout exceeded
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The log shows that the fwknop server added a rule in the iptables INPUT chain for
a total of 30 seconds to accept connections from 192.168.10.2 over tcp/22.
Although the 30-second timeout seems a bit short, if the iptables policy on the
underlying system is written so that packets that are part of established sessions
are accepted first before remaining packets are dropped, then any SSH session that
was established within the 30-second window will not be killed when the ACCEPT
rule is removed. Note that the port number for which the fwknop server permitted
access never appears in the knock sequence itself; it is defined in
/etc/fwknop/access.conf, so the client has to know to which port(s) it has access
after sending the sequence. This characteristic holds true for all shared sequences.

E N C RY P TE D  S E Q U E N C E

Now let’s take a look at an encrypted knock sequence. This time the sequence
itself will change depending on the key used to encrypt the source IP address,
protocol, port number, and local username that fwknop is being executed as.
Thus, encrypted sequences are not defined within any configuration file on the
server or client systems. Sequences are monitored on the server; if successfully
decrypted then such a sequence is valid and access controls will be modified.
The fwknop server must still be configured with the appropriate encryption key
and port(s) to open, and as usual this information is contained in the
/etc/fwknop/access.conf file on the fwknop server:

[server]# cat /etc/fwknop/access.conf

SOURCE: ANY;

ENCRYPT_SEQUENCE;

KEY: 3ncryptk3y;

OPEN_PORTS: tcp/22;

FW_ACCESS_TIMEOUT: 30;

REQUIRE_OS_REGEX: linux;

The SOURCE, OPEN_PORTS, FW_ACCESS_TIMEOUT, and REQUIRE_OS
_REGEX keywords are used as before, but two additional keywords,
ENCRYPT_SEQUENCE and KEY, are defined to instruct fwknop to accept a port
knock sequence encrypted with the subsequent key. Now for our encrypted port
knocking example:

[client]$ telnet 10.3.2.1 22

Trying 10.3.2.1 . . .

[client]$ fwknop -e -a 192.168.10.2 -P tcp -p 22 -r -k

10.3.2.1

[+] Enter an encryption key (must be as least 8 chars, but

less than 16

chars). This key must match the key in the file

/etc/fwknop/access.conf

on the remote system.

[+] Encryption Key:

[+] clear text sequence: 192 168 10 2 0 22 6 28 109 98 114

0 0 0 0

[+] cipher text sequence: 182 246 253 35 195 76 157 229 86

13 152 30 120 172 58 140

[+] Sending port knocking sequence to knock server:

10.3.2.1

[+] tcp/61182 -> 10.3.2.1

[+] udp/61246 -> 10.3.2.1

[+] tcp/61253 -> 10.3.2.1

[+] udp/61035 -> 10.3.2.1

[+] tcp/61195 -> 10.3.2.1

. . . 
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[+] Finished knock sequence.

[client]$ telnet 10.3.2.1 22

Trying 10.3.2.1 . . . 

Connected to 10.3.2.1.

Escape character is ‘^]’.

SSH-2.0-OpenSSH_3.8.1p1

On the server the following messages are written to syslog by fwknop:

Note that fwknop has allowed the real source through the firewall since this is
the source address that was encrypted in the sequence with the -a option. Any
other third-party IP address could have been specified here. Also notice that as
with the previous shared sequence, fwknop passively fingerprinted the client
operating system and the required Linux OS was found. Finally, note that the
encrypted sequence is rotated through the TCP and UDP protocols. More infor-
mation about fwknop, including a detailed description of all configuration
directives, can be found at http://www.cipherdyne.org/fwknop/.

Conclusion

Port knocking adds an additional layer of security for arbitrary services that are
accessible over a network. A client system must send a specific sequence of con-
nection attempts to the knock server before access is granted to any protected
service through a firewall or other access control device. Port knocking is useful
for enhancing security because anyone who casually scans the target system will
not be able to tell that there is any server listening on the ports protected by the
knock server. Port knocking is not designed to provide bullet-proof security,
and, indeed, replay attacks can easily be leveraged against a port knock server in
an effort to masquerade as a legitimate client. However, there are several tech-
niques for obfuscating port knock sequences through timing requirements, mul-
tiple protocols, passive fingerprinting of knock client operating systems, and
encryption in order to make knock sequences more resistant to replay attacks.
Fwknop is a complete port knocking implementation based around iptables,
and supports multi-protocol knock sequences (shared or encrypted) along with
passive OS fingerprints derived from p0f.
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Aug  8 13:00:28 orthanc fwknop: decrypting knock sequence for 192.168.10.2

Aug  8 13:00:28 orthanc fwknop: OS guess: Linux:2.4::Linux 2.4/2.6 matched for

192.168.10.2

Aug  8 13:00:28 orthanc fwknop: username mbr match

Aug  8 13:00:28 orthanc fwknop: adding INPUT ACCEPT rule for source: 192.168.10.2 to con-

nect to tcp/22

Aug  8 13:01:00 orthanc fwknop: removed iptables INPUT ACCEPT rule for 192.168.10.2 to

tcp/22, 30 second timeout exceeded




