
C H R I S W Y S O P A L

putting trust in
software code
Chris Wysopal is director of development at Symantec
Corporation, where he leads research on how to build
and test software for security vulnerabilities.

chris_wysopal@symantec.com

T W E N T Y Y E A R S A G O , K E N T H O M P S O N ,
the co-father of UNIX, wrote a paper about
the quandary of not being able to trust code
that you didn’t create yourself. The paper,
“Reflections on Trusting Trust,”1 details a
novel approach to attacking a system.
Thompson inserts a back door into the UNIX
login program when it is compiled and
shows how the compiler can do this in a
way that can’t be detected by auditing the
compiler source code. He writes:

“You can’t trust code that you did not totally create
yourself. No amount of source-level verification or
scrutiny will protect you from using untrusted code. In
demonstrating the possibility of this kind of attack, I
picked on the C compiler. I could have picked on any
program-handling program such as an assembler, a
loader, or even hardware microcode.”

Twenty years after Thompson’s seminal paper was
published, developments in the field of automated
binary analysis of executable code are tackling the
problem of trusting code you didn’t write. Binary
analysis can take on a range of techniques, from build-
ing call trees and looking for external function calls to
full decompilation and modeling of a program’s control
flow and data flow. The latter, which I call deep binary
analysis, works by reading the executable machine
code and building a language-neutral representation of
the program’s behavior.

This model can be traversed by automated scans to
find security vulnerabilities caused by coding errors
and to find many simple back doors. A source code
emitter can then take the model and generate a
human-readable source code representation of the pro-
gram’s behavior. This enables manual code auditing for
design-level security issues and subtle back doors that
will typically escape automated scans.

The steps of the decompilation process are as follows:

1. Front end decodes binary to intermediate language.
2. Data flow transformer reconstructs variable life-

times and type information.
3. Control flow transformer reconstructs loops, condi-

tionals, and exceptions.
4. Back end performs language-specific transformation

and exports high-level code.

To be useful the model must have a query engine that
can answer questions for security scanning scripts:

16 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: P UT TI N G TR U ST I N S O F T WA R E CO D E 17

■ What is the range of a variable?
■ Under what conditions is some code reachable? Any path, all paths?
■ What dangerous actions does this program perform?

Security scanning scripts can then ask questions such as:

■ Can the source string buffer size of a particular unbounded string copy be
larger than the destination buffer size?

■ Was the return value from a security-critical function call tested for success
before acting on the results of the function call?

■ Is untrusted user input used to create the file name passed to a create-file
function?

By building meaning from the individual instructions that are executed by the
CPU, deep binary analysis understands program behavior that is inserted by the
compiler. Thompson’s back-door code can’t hide from the CPU, and it can’t hide
from deep binary analysis. More important for real-world software security is
that vulnerabilities and back doors can’t hide in the static and dynamic libraries
that a program links to and for which source code is not always available.

The programmer productivity benefits of using off-the-shelf software compo-
nents are well known, but not much is said about the risks of using binary com-
ponents, which are common on closed source operating systems. When devel-
oping enterprise applications, programmers frequently concentrate on writing
business logic and leave presentation, parsing, transaction processing, encryp-
tion, and much more to commercial libraries for which they often have no
source code. These libraries typically come from OS vendors, database vendors,
transaction-processing vendors, and development framework vendors. Often
the programmers dutifully audit the 20% of the application they wrote and
ignore the 80% they cannot audit. Yet it is the entire program that is exposing
the organization running it to risk.

Deep binary analysis can follow the data flows between the main program and
the libraries in use to find issues that arise from the interaction between the
main program and a library function. Often any security vulnerabilities discov-
ered can be worked around by putting additional constraints on the data passed
to the library function. Sometimes, however, the function call will need to be
replaced. Using the tools we have developed at @stake (now Symantec), we have
found buffer overflows in the string functions of a popular C++ class library and
poor randomness being used in a cryptolibrary function. The cryptolibrary
function was using a random number generated by rand(), and srand() was
seeded with zero. No doubt there was a comment in the C code stating that the
random number generation needed to be replaced in the future, but this being
binary analysis we couldn’t tell.

An interesting use of binary analysis is the differential analysis of two binaries
that have small differences between them. Perhaps you are engaged in incident
response and have discovered an altered binary on the system for which the
attacker has not left any source code behind. Differential binary analysis can be
used to see what behavior has been added or removed from the binary. A use
that has important security implications is to reverse engineer the details of a
vulnerability by determining the differences between a vulnerable program and
one that has a vendor security patch applied. If black hats can easily determine
the cause of a vulnerability simply by looking at the patch, then there is little to
be gained from vendors withholding vulnerability details, and there is increased
urgency to patch vulnerable systems quickly.

Halvar Flake has developed tools for binary diffing and gave a presentation on
his techniques at Black Hat Windows 2004.2 Todd Sabin has developed different
techniques for differential binary analysis which he calls “Comparing Binaries
with Graph Isomorphisms.”3 The field is rapidly evolving, so as with so many

18 ; L O G I N : V O L . 2 9 , N O . 6

topics in the security arena, defenders are urged to stay apprised of develop-
ments, because attackers surely will.

I am hopeful that the field of binary analysis will evolve to a point where third-
party testing labs will be able to perform repeatable, consistent security testing
on closed source software products without the cooperation of software ven-
dors. Much as Consumer Reports is able to verify automobile vendor claims of
performance and carry out their own safety testing, a software testing lab would
be able to quantify the number of buffer overflows, race conditions, script injec-
tions, and other issues in a program under automated test. A security quality
score could be generated from the raw test results. It will undoubtedly be imper-
fect—there will always be issues missed and some false positives—but on a
coarse scale, say, ranking program security from A to F, it would be very useful
to consumers.

Today there is little useful information by which to rate software security quality
except for a particular product’s security patch record. This record is somewhat
useful but typically only exists for the most popular products, which garner the
bulk of the attention of security researchers. Another source of security informa-
tion is common criteria evaluations. But with products that have received com-
mon criteria EAL 4 certification still being subject to monthly patches of critical
severity, there is clearly a need for additional ways of rating security quality.

Deep binary analysis stands to revolutionize the software security space not only
for developers and businesses but for consumers, too. It’s an exciting future, one
in which we don’t have to trust the compiler manufacturers, third-party driver
and library providers, or application and operating system vendors. Software
developers can use binary analysis tools to discover and remediate the vulnera-
bilities in their own software, and consumers can verify that their vendors have
performed due diligence and are not delivering shoddy code.

R E F E R E N C E S
1. Ken Thompson, “Reflections on Trusting Trust,” Communications of the ACM,
vol. 27, no. 8 (August 1984), reprinted at http://www.acm.org/classics/sep95.

2. Halvar Flake, “Automated Binary Reverse Engineering”: http://www.blackhat.com/
presentations/win-usa-04/bh-win-04-flake.pdf.

3. Todd Sabin, “Comparing Binaries with Graph Isomorphisms”:
http://www.bindview.com/Support/RAZOR/Papers/2004/comparing_binaries.cfm.

