
R I K F A R R O W

editor’s thoughts
(a.k.a. musings)

Rik Farrow provides UNIX and Internet security
consulting and training. He is the author of UNIX
System Security and System Administrator’s Guide
to System V.

rik@spirit.com

W E L C O M E T O T H E S I X T H S E C U R I T Y
edition of ;login:. Like past editions, this one
contains articles about security topics that I
consider to be among the most important
current issues. I want to thank the authors
who wrote for this edition. It is the authors
who provide the content. All I do is find
them and cajole them into writing.

This issue also includes the summaries of the 13th
USENIX Security Symposium.

The Security Symposium started out with what some
people considered a depressing keynote. Earl Boebert,
of Sandia National Laboratories, and one of the
authors of Multics, provided a rather pessimistic look
at operating system security. I tend to agree with a lot
of Boebert’s assertions, and you can read them for
yourself in the summaries.

You can also read Jonathan Shapiro’s response to the
keynote. Shapiro points out that there were some very
good reasons why Multics did not succeed in the mar-
ketplace, outside of the “crap in a hurry” that Boebert
mentioned in his keynote speech. Again, you can read
Shapiro’s thoughts on this topic for yourself.

I have often written about the failures of operating sys-
tems in my Musings columns. Largely based on the
goals of Multics, operating systems were, at least in
theory, supposed to protect a system against poorly
written software—that is, logic or programming faults
in software should never compromise the security of a
system. The operating system should encapsulate the
faulty process and prevent software flaws from chang-
ing the overall state of the system. As we all know, this
is not how operating systems work.

Instead, what we see are systems that are exploited via
a process that displays email for a user,or ones that
permit a non-privileged user to become a privileged
one, and totally compromise the security of a system.

I believe there really are two questions to ask about the
future security of our operating systems. First, is it
possible to build an operating system that is really
secure and can be used by anyone? Second, do we have
the will to end the current fiasco, and actually begin
using secure operating systems?

Some people might argue that today’s operating sys-
tems are secure. The Linux Security Module in the 2.6
series of kernels does provide hooks for adding much
more comprehensive access controls than exist with-
out the LSM. LSM does provide support for more con-
trol, but at the cost of complexity. These same hooks
appear in FreeBSD 5, and come with the same level of

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: E D ITO R ’ S TH O U G HTS 5

complexity. OpenBSD takes a different approach, based
on profiling processes and systrace.

All BSD versions support the jail() system call for
isolating processes in a changed root environment that
includes process isolation and some control over the
network environment as well. But a proper jail setup
also means proper firewall configuration. The jail only
becomes reliable at the network level in cooperation
with configuration that is external to the jail. The jail
also does not prevent against CPU DoS attacks, be-
cause it does nothing about process scheduling (read
Kirk McKusick’s article in the August 2004 issue of
;login: for more about BSD jails). Memory can also be
depleted from within a jail.

Sun has borrowed from the FreeBSD jail concept to
create zones in Solaris 10. Each zone shares the same
operating system, similar to the FreeBSD jail. But Sun’s
implementation goes a bit further, by allowing separate
resource allocation for each zone. Using resource man-
agement, CPU scheduling and memory usage can be
limited for each non-global zone (every zone except
the default, first zone is non-global and unable to see
other zones). Sun has apparently solved the resource
depletion problem found in the jail approach. I’ve
heard that AIX and HP-UX use logical partitions to do
something similar.

All of these approaches represent attempts to retrofit
security on existing operating systems so that they can
transparently support existing software. All the sysad-
min has to do is leap through a few hoops, carefully
and without making any egregious errors, and things
will work. Hopefully.

Microsoft’s current security model is so broken it
deserves mention. There are way too many privileged
processes running. And putting IE and its related
HTML-rendering engine (used when reading email) on
every system means that compromise is just an email
message away. If ever an application screamed out to
be put in a really effective jail, Internet Explorer is that
application. Take IE, add default Administrator privi-
leges for the first user account on every XP system, and
IE becomes a root compromise, even when patched
during Microsoft’s (mostly) monthly patch
announcement.

Now I invite you to follow along as I imagine a differ-
ent world, a world where the operating system actually
did prevent software, and even bad configuration, from
creating root compromises. Let’s start out with the type
of system that Bill Cheswick alluded to in his invited
talk, “My Dad’s Computer.” Cheswick’s dad’s computer
had become like a lot of other Windows systems—so
loaded with viruses, adware, spyware, and plain old
cruft that it was barely usable. I’ve heard of other peo-
ple buying a new Windows system and not connecting
it to the Internet just so they could use a wordproces-

sor or spreadsheet without being interrupted by
obscene popups every minute or so.

Most people need a simple desktop system that can do
three things securely: play games, do Internet stuff,
and handle simple office tasks. I mention playing
games first because games have been driving the PC
industries’ quest for ever greater graphics performance,
and because most of the people I see using laptops on
airplanes are playing Solitaire. Games must be impor-
tant. The fantasy OS must allow users to play games
without affecting the overall state of the system (other
than the DoS and heat discharge caused by pegging the
CPU and graphics systems while displaying millions of
3-D polygons per second as sub-woofers shake the
room).

The Internet stuff is much more of a problem. This is
in which the operating system must maintain a lock-
box where Web browsers, mail readers, and various IM
tools can wreak all the havoc they want to without
impacting the rest of the system. Of course, if users can
continue to install software and plugins, even the lock-
box will become so infested as to become unusable. So
the user will get a button labeled “Clean up Internet”
which cleans his own Internet lockbox, restoring it to a
usable condition. Remember that I am waving a magic
wand here, so I don’t have to concern myself about
cleaning up the cookies file, and preserving the state
that the user actually cares about.

Some vendors like to use Web browsers as the mecha-
nism for installing patches. If one can trust the operat-
ing system, signed patches can still be installed—by
some service running outside the lockbox, after verify-
ing signatures on the patches. Ideally, no patches
would be required. But reality sometimes intrudes into
even the wildest fantasies.

The final lockbox contains the user, her files, desktop,
and office applications. These applications are sadly
lacking in the ability to execute macros that might be
included in documents or spreadsheets. The Internet
lockbox can leave email and files in a directory where
the user can access them. But no file stored anywhere
in the user’s file space can ever be executed.

If desktop systems were actually designed to function
as business machines, things would be a lot simpler in
this fantasy. The desktops could be diskless worksta-
tions where the user could never install any software,
including viruses, spyware, adware, or games (sorry
about that). Imagine centralized backup, identity man-
agement, software updates, and no more touching
desktop systems. Sun’s SunRay comes close to this.

Servers are headless. No fancy GUI software, nothing
but command-line interfaces run using SSH. For the
weak in sysadmin skills, fancy GUIs can be installed
on desktop systems to issue the command lines used to
configure and maintain the servers. No users except

6 ; L O G I N : V O L . 2 9 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: E D ITO R ’ S TH O U G HTS 7

the administrator ever log in to the server. There are no
accounts for them. The server does not include any
software other than what is required for the operation
and maintenance of installed services.

The server applications run in their own lockboxes,
again preventing them from inadvertently damaging
the systems they are hosted upon. The lockbox
includes resource management controlling how the
service behaves. For example, Web and SQL servers
only accept connections; they never make outgoing
connections. DNS servers send and receive packets on
port 53. None of these services ever execs a shell. Ser-
vices get allotted a reasonable fraction of total CPU,
memory, and disk resources. While similar to a jail,
this lockbox also includes resource allocation and lim-
its on network activities. To make it easy to jump
through configuration hoops, services come with con-
figuration templates so that allocating resources is
dead simple.

The fantasy OS would have to be tiny, so that it can
be verified. We have seen more than enough kernel

exploits in the last several years to convince people (at
least me) that small is beautiful.

Frankly, the fantasy OS would permit us to get a lot
more work done, as we would spend a lot less time
dealing with broken systems.

I know I have left out a lot of necessary features, such
as secure authentication that supports login and other
services. You can read other people’s ideas about single
sign-on (Scher’s article) and managing identification
(Lear’s article) in this issue. And just to balance things
out, you can read about reverse engineering of code
(Wysopal), slicker Windows rootkits (Butler and
Sparks), defending against buffer overflows (Alexan-
der), port knocking that unlocks SSH (Rash), and
improvements to honeynets (Forte et al.). Jennifer
Granick provides words of advice about the legality
(or, rather, the lack thereof) of spyware. And Goel and
Bush consider biological models for computer immune
systems, because security will never be perfect.

Even in an imaginary world.

