
THE MAGAZINE OF USENIX & SAGE
April 2004 • volume 29 • number 2

The Advanced Computing Systems Association

inside:
PROGRAMMING
McCluskey: Using C# Abstract Classes

34 Vol. 29, No. 2 ;login:

using C# abstract classes

In our last column we discussed C# interfaces, a mecha-
nism for specifying a contract, a particular set of meth-
ods, that an implementing class must define.

In this column we’ll consider another somewhat similar feature
known as abstract classes. Such classes are a basic design and
structuring tool for C# applications and allow you to provide
partial class implementations that can be customized.

An Example
Imagine that you’re doing some work with benchmarking and
performance analysis, and you’d like to develop some C# utility
classes to aid in this effort. You need one utility that executes a
particular routine or task repeatedly and keeps track of the
elapsed time.

Here’s some C# code that captures this idea:

using System;
using System.Threading;

abstract public class PerfUtils {
abstract public void DoRun();

public long TimeRun(int repcount) {
long currtick = DateTime.Now.Ticks;
for (int i = 0; i < repcount; i++)

DoRun();
return DateTime.Now.Ticks - currtick;

}
}

public class BenchMark1 : PerfUtils {
public override void DoRun() {

Thread.Sleep(500);
}

}

public class PerfUtilsDemo {
public static void Main() {

PerfUtils pu = new BenchMark1();
long elapsed = pu.TimeRun(10);

Console.WriteLine("elapsed time in milliseconds = " +
elapsed / 10 / 1000);

}
}

PerfUtils is an abstract class, meaning that it declares but does
not define all its methods. An abstract class, like an interface,
specifies a contract that must be fulfilled or implemented by
another class (BenchMark1). In the case at hand, the TimeRun
method is implemented, but the DoRun method is not – it’s an
application-specific method that a subclass must supply.

Since an abstract class does not have definitions for all its meth-
ods, it’s not possible to create instances of such classes, and the
following code will evoke a compiler error:

abstract public class A {
abstract public void f();

}

public class AbstractNew {
public static void Main() {

A aref = new A();

aref.f(); }

}

If such code was legal, then at runtime there might be calls to
unimplemented methods.

We can say that an abstract class must be derived from or
extended in order to be of any value; that is, there must be a
further class that uses the abstract class. By contrast, the other
extreme is a sealed class that cannot be derived from at all. For
example, this code is illegal:

sealed public class A {
void f() {}

}

public class B : A {}

Sealed classes are useful in a case where a derived class would
alter the semantics of the class in some way, causing it to break.

Factoring Common Functionality
One of the key differences between an interface and an abstract
class is that an abstract class can provide partial implementa-
tions of some methods, as a base, and thus factor out common
functionality. By contrast, interface methods cannot be defined,
and so the following code is invalid:

public interface IA {
void f() {}

}

public class B : IA {

by Glen
McCluskey
Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.
glenm@glenmccl.com

35April 2004 ;login: USING C# ABSTRACT CLASSES l

l

P

R
O

G
R

A
M

M
IN

Gpublic void f() {}

public static void Main() {}
}

In the earlier example, the common functionality is TimeRun, a
routine that’s useful across a range of applications. It works
with an application-specific method DoRun, supplied in a
derived class.

Another example of factoring is the code below which illus-
trates a bit of a framework for putting together some collection
classes (lists, hashtables, etc.):

public interface ICollection {
int Size();

bool IsEmpty();

// ... other methods ...
}

abstract public class Collection : ICollection {
abstract public int Size();

public bool IsEmpty() {
return Size() == 0;

}

// ... other methods ...
}

public class ListCollection : Collection {
public override int Size() {

// ... logic for computing size of ListCollection ...

return 0; // dummy return
}

}

public class Test {
public static void Main() {

ICollection ic = new ListCollection();
}

}

ICollection is an interface that declares some common methods
all collections will have. These methods include both Size, used
to obtain the number of elements currently in the collection,
and IsEmpty, which determines whether a collection is empty.
Since IsEmpty can be implemented in terms of Size, it makes
sense to provide a definition in the abstract class. By contrast,
the appropriate logic to compute the size of a collection will
vary, depending, for example, on whether the collection is a list
or a hashtable.

Using interfaces and abstract classes together in this way is a
very powerful technique. The abstract class serves as a means of
factoring common functionality and providing an implementa-

tion for it. But because an interface is also defined, it’s possible
to sidestep the abstract class and start over with your own cus-
tom implementation that implements the interface. If you pro-
gram in terms of interfaces, as we described in the last column,
then it’s easier to substitute your own implementation for that
provided to you in a standard library.

Other Differences Between Interfaces and
Abstract Classes
An abstract class can provide a partial implementation, as we
mentioned above, whereas interfaces are used to specify but not
implement a contract.

Another difference involves multiple inheritance. It’s possible to
implement more than one interface at a time, like this:

public interface IA {
void f();

}

public interface IB {
void g();

}

public class C : IA, IB {
public void f() {}
public void g() {}

public static void Main() {}
}

whereas the corresponding code with abstract classes is not per-
mitted:

abstract public class A {
abstract public void f();

}

abstract public class B {
abstract public void g();

}

public class C : A, B {
public override void f() {}
public override void g() {}

public static void Main() {}
}

Implementing multiple unrelated interfaces can be quite useful,
and sometimes the term “mixin” is used to describe this tech-
nique. For example, in the previous column we declared an
interface:

public interface IDistance {
double GetDistance(object obj);

}

A class implements this interface to provide functionality to
compute the distance between two objects, for example the
Euclidean distance between X,Y points or the number of days
between two calendar dates. The class could implement several
of these interfaces, each one adding a bit of functionality.

Polymorphic Programming
Our final example illustrates another aspect of programming
with abstract classes. Modern object-oriented languages make
use of what is called polymorphic programming, with virtual
functions as another term for the same idea. This idea centers
on programming with a common interface across a hierarchy of
classes and their associated objects, and runtime binding for
method calls.

We can tie down this concept by considering an example:

using System;

abstract public class A {
abstract public void f1();

public virtual void f2() {
Console.WriteLine("A.f2");

}

public virtual void f3() {
Console.WriteLine("A.f3");

}
}

public class B : A {
public override void f1() {

Console.WriteLine("B.f1");
}

public new void f2() {
Console.WriteLine("B.f2");

}

public override void f3() {
Console.WriteLine("B.f3");

}
}

public class Polymorphic {
public static void Main() {

A aref = new B();

aref.f1();
aref.f2();
aref.f3();

}
}

In this code, we create a new B object and assign it to a base
class reference (A is the base of B). We then call methods f1, f2,
and f3 through the base reference.

What happens when the methods are called? For f1, B.f1 is
called, because the object pointed at by the A reference is really
a B, and we specified that B.f1 overrides A.f1, and A.f1 is
abstract anyway.

The same consideration applies to B.f3. The method is virtual
(bound at runtime), and we’re operating on a B object.

What about f2? It’s marked as virtual in A, but B declares f2 to
be “new,” that is, the virtual dispatch hierarchy is broken. So
A.f2 is called.

Virtual method dispatch is extremely powerful. For example,
suppose that you have an abstract class Graphics that represents
a graphics object and declares a Draw method. Then you have a
variety of classes that extend the abstract class and that repre-
sent graphical objects like Circle and Line and Point and Rectan-
gle. Instances of these classes can be assigned to a Graphics
reference (pointer), and then the Draw method can be called on
each instance, without worrying about the exact type of the
object being referenced.

Abstract classes are fundamental building blocks that you can
use to structure your C# programs. They are a good choice if
you'd like to provide a partial class implementation that can be
extended and customized.

36 Vol. 29, No.2 ;login:

