
Integration with Inline
Perl is a great language, but there are some things that
are best left to a compiled language like C. This month,
we take a look at the Inline module, which eases the
process of integrating compiled C code into Perl pro-
grams.

Perl exists to make easy things easy and hard things possible. If
you are writing programs using nothing but Perl, thorny issues
like memory management just go away. You can structure your
program into a series of reusable Perl modules and reuse some
of the many packages available from CPAN. Things start to
break down if you need to use a C library that does not yet have
a Perl interface. Things get hard when you need to optimize a
Perl sub by converting it to compiled C code.

Languages like Perl, Java, and C# focus on helping you program
within a managed runtime environment. Reusing C libraries
cannot be done entirely within these environments. Each of
these platforms offers an “escape hatch” for those rare occasions
when compiled code is necessary. In Java, the Java Native Inter-
face (JNI) serves this purpose. In C#/.Net, programs can be
linked to “unmanaged code,” compiled libraries that live outside
the .Net environment. In Perl, integration with external libraries
is performed using XSubs and the esoteric XS mini-language.

Linking compiled code into Perl, Java, or .Net is necessary for a
minority of projects. It is one of those “hard things that should
be possible.” Compared to Perl Java and .Net, Perl’s XS interface
is the oldest and admittedly the least easy to use. XS is a mix of
C, C macros, and Perl API functions that are preprocessed to
generate a C program. The resulting C source is then compiled
to produce a shared object file that is dynamically linked into
Perl on demand, where it provides some Perl-to-C interface
glue and access to other compiled code, such as a library to
manipulate images, an XML parser, or a relational database
client library.

Creating an XS program is a little tricky. The mini-language
itself is documented in the perlxs manual page and the perlxstut
tutorial that come with Perl. XS programs may need to call Perl
API functions, which are documented in the perlguts and perl-
api manual pages. You can find more information in books like
Programming Perl, Writing Perl Modules for CPAN, and Extend-
ing and Embedding Perl.

To create simple XS wrappers around compiled libraries, start
by preprocessing a C header file with the h2xs tool and write
additional XS wrapper functions as necessary. Another com-
mon approach uses swig to create the necessary wrapper code
without using XS explicitly. If you are knowledgeable about Perl
internals, you might avoid both approaches and write XS inter-
face code from scratch.

Writing XS wrappers is tricky, and the skill is difficult to learn.
Many long-time Perl programmers avoid XS because of its
complexity. The state of XS is one of the factors that led the Perl
development team to start the Perl 6 project. One of the goals
behind Perl 6 is the creation of a new runtime engine, Parrot,
that provides a substantially simplified interface for integrating
with compiled code.

Enter Inline::C
One day at the Perl Conference in 2000 (shortly after the Perl 6
project was announced), Brian Ingerson had an epiphany. Link-
ing Perl to compiled C programs is one of those “hard things

by Adam Turoff
Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.
ziggy@panix.com

32 Vol. 29, No. 1 ;login:

practical perl

f(obj2);
}

}

You can use this technique to give a group of classes a particular
property that can be distinguished at runtime.

Interfaces are quite useful in specifying required behavior, and
they enable you to program in terms of high-level types without
having to get into implementation details.

33February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

Gthat should be possible,” but there was no good reason why it
needed to be hard. He set out to create a much simpler way to
integrate Perl and C in the same program.

The result is his Inline::C module, which greatly simplifies inte-
grating Perl with compiled C code. The goal behind Inline::C is
to hide all of the complexity of Perl/C integration behind a sim-
ple, easy-to-use interface. With Inline, this task is as simple as
can be, even simpler than linking C code with Java or C# pro-
grams.

Beyond just integrating C and Perl code in the same program,
Inline is about combining Perl with any number of languages in
one program, using the same simple interface. Inline::C, the first
and oldest Inline module, integrates C code with Perl; other
Inline modules enable you to integrate Perl with C++, Java,
Python, and Tcl. Some language-integration modules, like
Inline::Java, are in the early stages of development, while oth-
ers, like Inline::C, are more heavily used and quite stable. In fact,
Inline::C is so stable that it is no longer necessary to write XS
glue code to load a C library into a Perl program.

Using Inline::C
One common use of Inline::C is to embed, or “inline,” C func-
tions within a Perl program. Here is a Perl program imple-
mented with a mix of Perl and C code:

#!/usr/bin/perl -w
use strict;
use Inline C => <<END_OF_C;
int add(int x, int y) {

return x+y;
}
END_OF_C

print add(3, 4), "\n"; ## prints 7

The use Inline declaration takes a few parameters. The first is
the string “C”, which indicates that the code segment that fol-
lows (in this case, a heredoc) is a C program. The next parame-
ter is the actual text of a C program, a simple function that adds
two integers.

Later, in the Perl portion of the program, the subroutine call
add(3, 4) will be handled by the C function add found earlier in
this program. When this Perl script is run, the C program will
be extracted, compiled, and dynamically loaded.

A Perl program can have multiple instances of inlined C code.
For example:

#!/usr/bin/perl -w
use strict;
use Inline C => <<END_OF_C;
int add(int x, int y) {

return x+y;
}
END_OF_C

use Inline C => <<END_OF_C;
int mult(int x, int y) {

return x*y;
}
END_OF_C

print add(3, 4), "\n"; ## prints 7
print mult(3, 4), "\n"; ## prints 12

Or, more conventionally, a segment of inlined C code can con-
tain multiple definitions:

#!/usr/bin/perl -w
use strict;
use Inline C => <<END_OF_C;
int add(int x, int y) {

return x+y;
}

int mult(int x, int y) {
return x*y;

}
END_OF_C

print add(3, 4), "\n";
print mult(3, 4), "\n";

However, this usage gets to be cumbersome. A more readable
option is to keep the Perl parts and the C parts of a program
separated. In this next example, the C portion of a program is
inlined in the __DATA__ section of a Perl script. The use Inline
C => “DATA”; declaration tells the Inline module to look for C
code in the data segment of the current Perl program. Since the
Inline module can integrate languages other than C, the __C__
token is necessary to declare that the code that follows is in C.
Other material, such as Pod documentation, could precede the
__C__ token and still be visible within the __DATA__ section.

#!/usr/bin/perl -w
use strict;
use Inline C => "DATA";

print add(3, 4), "\n";
print mult(3, 4), "\n";
__DATA__
__C__
int add(int x, int y) {

return x+y;
}

int mult(int x, int y) {
return x*y;

}

PRACTICAL PERL ●

Vol. 29, No.1 ;login:34

Another option is to store the C source code in another file. The
Inline module prefers that source code found in external files be
located in another directory. In this example, the two C func-
tions above, add and mult, are stored in src/add_mult.c. Here is
the updated Perl program:

#!/usr/bin/perl -w
use strict;
use Inline C => "src/add_mult.c";

print add(3, 4), "\n";
print mult(3, 4), "\n";

These are a few of the more common ways to integrate Perl and
C in a single program. The Inline module supports other mech-
anisms, such as compiling and loading C code that’s created at
runtime. Although I can think of many reasons why I want to
dynamically create Perl code at runtime, I can’t think of a rea-
son why I would want to dynamically create and load C code at
runtime. Nevertheless, that option exists.

How Inline Works
When mixing C and Perl code in the same program, the C
sources must be compiled before they can be used. Inline is not
a C interpreter or a C compiler; rather, it is an environment for
integrating pieces of a program written in Perl with other lan-
guages.

Compiling the C sources as they appear in the inlined code seg-
ments is insufficient, since wrapper code is still necessary to
manage the interface between Perl and C. The process is com-
plicated but mechanical. The Inline::C module performs all of
the work that would normally be done by hand when writing
XS interfaces using h2xs or swig.

When these Perl programs are first run, Inline automatically
generates the necessary XS wrappers for the C functions add
and mult, pre-processes that XS code into C, compiles the
resulting C code, and loads the object file into the current Perl
process. These object files are saved in a cache directory (usually
named _Inline in the current directory), where they can be
reused the next time the program is run. Programs that use
Inline in this manner are a little slow to run the first time, but
every time thereafter, the object files are loaded in as is, and the
program runs with no noticeable overhead.

Programs tend to change over time. Each time a Perl program is
run, it is read by the Perl interpreter, compiled, and run. The
inlined C portion of these programs could also be modified,
and running a compiled version of an out-of-date C program
isn’t very useful. That is why Inline uses a checksum to match
up the C source and object files. If the checksums match, the
compiled version is loaded immediately. If the fingerprints do

not match, Inline transparently compiles the updated source
code before loading it.

Advanced Uses for Inline::C
The C functions add and mult are admittedly quite simplistic.
However, they show that simple C functions can be integrated
into Perl programs with little effort. Inline::C handles all of the
complexity of converting Perl data structures to and from sim-
ple C data types (int, long, double, and char *). Inline::C also
supports passing Perl scalar variables (SV * structures in C) to
and from C functions.

Long-time Perl programmers also expect to have the ability to
pass a list of values to a sub and to receive one back. These tech-
niques are also supported, but are slightly more difficult to
write. Inline::C manages some of this complexity but cannot
hide all of it. See the Inline::C and Inline::C-Cookbook manual
pages for more details on using inlined C code with these
behaviors.

Many C libraries don’t deal with simple C data types, but focus
on application-specific data structures. Writing interface code
to create C structs, examine struct members, or operate on
structs is slightly more difficult. Inline still manages to hide
much of the complexity for these situations. Writing glue code
to use these kinds of C libraries may require using some Perl
API functions. Thankfully, examples can be found with the
Inline manual pages and in the perlguts and perlapi manual
pages.

While the easiest way to use Inline is to combine bits of Perl and
C in the same source file, the most interesting use is to provide
access to an existing C library. Perl provides built-in functions
for standard trigonometric functions like sin and cos, but not
for tan, asin, acos, atan, or any of their hyperbolic counterparts.
All of these are provided by the standard math library, Libm.
Here is a small Perl program that uses Inline to provide the nec-
essary interfaces to these trigonometric functions:

#!/usr/bin/perl -w
use strict;
use Inline C => "DATA",

ENABLE => "AUTOWRAP",
LIBS => "-lm";

my $pi = 4*atan(1);
print “pi = $pi\n”;

__DATA__
__C__
double tan(double x);
double asin(double x);
double acos(double x);
double atan(double x);

35February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

GThe use Inline declaration above turns on the “Autowrap” fea-
ture, which generates wrapper code for simple function proto-
types. The LIBS => "-lm" declaration specifies options to pass to
the compiler when creating the object file. In this case, the glue
code that Inline generates is linked against the math library,
Libm.

Building with Inline
The examples presented thus far use Inline in a manner that
compiles C programs as necessary, at runtime. Normally, Perl
modules that provide interfaces to C libraries compile the XS
interface once, at build time. Modules are installed with both
the Perl source and the compiled XS interfaces.

Inline can be used to compile interface wrappers at build time
as well. Here is a small module that turns on these features.
First, use h2xs to create the appropriate boilerplate module
files. (Although h2xs started out as a tool to convert C header
files into XS interfaces, common usage today does not involve
profiling header files or creating XS stubs.)

[ziggy@cantillon ~]$ h2xs -AXP Math::Libm
Writing Math/Libm/Libm.pm
Writing Math/Libm/Makefile.PL
Writing Math/Libm/test.pl
Writing Math/Libm/Changes
Writing Math/Libm/MANIFEST
[ziggy@cantillon ~]$

Next, update the newly created Perl module,
Math/Libm/Libm.pm, to include the necessary Inline magic:

package Math::Libm;
use 5.008;
use strict;
use warnings;

use Inline C => "DATA",
ENABLE => "AUTOWRAP",
LIBS => "-lm",
NAME => "Math::Libm",
VERSION => '1.00';

our $VERSION = '1.00';

1;
__DATA__
__C__
double tan(double x);
double asin(double x);
double acos(double x);
double atan(double x);
// ... other libm prototypes ...

This use Inline declaration uses two new options, NAME and
VERSION. These options tell Inline to build the C wrapper code
as if it were a typical XS interface.

Finally, update the autogenerated Makefile.PL. The standard
use ExtUtils::MakeMaker should be replaced with a use
Inline::MakeMaker declaration. At this point, the standard
build/test/install process will use Inline to create, build, com-
pile, and install a Perl module that loads the compiled interface
from the site library and will not compile the C code the first
time the module is used.

Building this module uses the following familiar steps:

[ziggy@cantillon ~/Math/Libm]$ perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Math::Libm
[ziggy@cantillon ~/Math/Libm]$ make
cp Libm.pm blib/lib/Math/Libm.pm
/usr/bin/perl -Mblib -MInline=NOISY,_INSTALL_ -
MMath::Libm -e1 1.00 blib/arch
... Inline Diagnostic messages ...
[ziggy@cantillon ~/Math/Libm]$ make test && make install
...
[ziggy@cantillon ~/Math/Libm]$

Conclusion
Integrating Perl with C used to be a chore. With Inline, integrat-
ing with simple C functions is easy, and integrating with more
complex C functions is possible. Using Inline is much easier
than the alternatives, like writing XS code from scratch or using
Java or .Net interfaces to integrate C libraries.

PRACTICAL PERL ●

