
42 Vol. 29, No. 1 ;login:

building a virtual IPv6 lab using
user-mode Linux

The function of an operating system is to provide users
and applications with a high-level abstraction of the
underlying hardware architecture, isolating them from
the complexity of such architecture and providing them
with a simple and consistent view of system resources.
Applications running within a certain operating system
actually deal with a “virtual machine” composed of the
physical hardware and the layer of abstraction superim-
posed on it by the operating system. User-mode Linux
(UML) is a port of the Linux kernel to the virtual
machine composed of the physical hardware and the
Linux kernel. In simple terms, UML is a kernel patch that
allows users (even unprivileged users) to run an instance
of the Linux kernel as a user-land process. UML was
introduced by Jeff Dike and is available for the 2.4 ker-
nel series as a patch, while being a standard part of the
2.6 kernel series.

In this article, the kernel running as a user process will be called
the UML kernel, while the “real” kernel will be called the Linux
kernel. Similarly, the virtual machine consisting of the UML ker-
nel, its root file system and the processes created by it will be
called the UML machine, while the “real” machine will be called
the host machine.

Having the ability to run a Linux kernel as a user-space process
has many practical applications. Some of the uses of UML are:

■ Kernel development: With UML, familiar user-space debug-
ging and performance profiling tools can be used for kernel
development. A misbehaving UML kernel can be just killed
like a normal process – no need to reboot if your experi-
mental kernel crashes.

■ Virtual hosting: With UML, a single physical machine can
host a number of UML machines, depending on the avail-
able processing power and memory. Each UML machine
can be dedicated to a user to run whatever services he or she
needs.

■ Honeypot building: A UML machine can be used as a hon-
eypot for hackers, where it offers a sandbox for them to play
around in without causing any harm, while providing secu-
rity experts with the opportunity to study their techniques.

■ Virtual networking: UML machines running on the same
host can be networked together and with the host machine.
They can also be connected to the rest of the world, using
the host machine as a gateway.

Being a data network engineer, I am mostly interested in virtual
networking; in fact, the original motivation for me to explore
UML was my need for IPv6 routers and servers to experiment
with as part of an IPv6 migration study I am working on. In the
lab, UML provides me with a cost-effective and space-conserv-
ing method of constructing an IPv6 network to test routing and
serving with the new network layer protocol. Outside the lab,
UML provides me with a “virtual portable lab” in my laptop,
allowing me to carry my experimental IPv6 network with me
while I move around.

In this article, I’ll present a method for creating UML machines
for experimenting with the IPv6 protocol. The procedure pre-
sented, however, can be used for other data-networking experi-
ments. The article assumes that the reader is familiar with IPv6
and will show how to create an IPv6 network consisting of three
IPv6 routers connected with point-to-point links. One of the
routers is the host machine (called alpha) and the other two are
UML machines, ghost and shadow (see Figure 1). Although
the standard Linux kernel contains an IPv6 stack, it is recom-
mended to use the USAGI Linux stack. The USAGI (UniverSAl
playGround for IPv6) implementation has better performance,
better standard conformance, and fewer bugs compared to the
IPv6 stack of the standard kernel. The home page of the USAGI
project is http://www.linux-ipv6.org. In our project, we’ll use the
standard Linux kernel for ghost and the USAGI kernel for
shadow, just to illustrate the procedure for both kernels. The
routing software we’ll be using is GNU Zebra (http://www.
zebra.org).

The article will show the reader what software components are
needed, how to customize and create a UML kernel, how to cre-
ate a root file system for the UML machine, and how to config-
ure networking. Using pre-built components all the way makes
the process much easier but leads to a rigid configuration, while
building all components from scratch may be difficult and time-
consuming. Therefore, the procedure presented tries to adopt a

by Salah M.S.
Al-Buraiky
Salah M.S. Al-Buraiky
is a data network engi-
neer working for the
Communication Solu-
tions Engineering
Group of Saudi
Aramco. He is also an
electrical engineering
graduate student at
King Fahd University
of Petroleum and Min-
erals. He is specializing
in data communication
and machine learning.

salah.buraiky@aramco.com

43February 2004 ;login:

hybrid approach to achieve a balance between customizability
and ease of implementation.

The Building Software Blocks
The needed software components are:

■ A fresh source tree for a recent kernel obtained from any
kernel source repository mirror. The kernel source I’ll be
using for this article is http://www.kernel.org/pub/linux/
kernel/v2.4/linux-2.4.20.tar.bz2.

■ A USAGI-patched kernel. This can be obtained from
ftp://ftp.linux-ipv6.org/pub/usagi/stable/kit/ or any other
USAGI mirror. I had some trouble compiling the USAGI
kernel with the UML patch, but the following USAGI pack-
age worked for me:

usagi-linux24-stable-20021007.tar
with patch: uml-patch-2.4.19-51.bz2

■ The UML patch to be applied to the kernel. Choose a patch
that matches the version of the kernel source tree you have
downloaded. The patches I’ll be using here are http://
prdownloads.sourceforge.net/user-mode-linux/uml-patch-
2.4.20-6.bz2, for the standard kernel, and http://prdownloads.
sourceforge.net/user-mode-linux/uml-patch-2.4.19-51.bz2
for the USAGI kernel.

■ The user_mode_linux package. This package contains a
pre-built UML kernel and a number of utilities to be used
with UML. The pre-built UML kernel contained in the
package will only be used initially and will be replaced by
a customized kernel once the root file system is built. The
version used for this article is
http://prdownloads.sourceforge.net/user-mode-linux/
user_mode_linux-2.4.19.5um-0.i386.rpm.

■ The UMLBuilder package. The root file system of a UML
kernel is created within an ordinary file structured like a
file system rather than on a disk partition, as is usually the
case with “real” kernels. We’ll call that file the rootfs file. A
relatively easy way to create a customized rootfs file is to
use UMLBuilder, a graphical application for creating rootfs
files from RPM-based distributions (e.g., RedHat and
SuSE). UMLBuilder requires the user_mode_linux package
in order to work. The version used for this article is
http://prdownloads.sourceforge.net/umlbuilder/
umlbuilder-1.40-5.i386.rpm.

■ The GNU Zebra Routing Package: There isn’t a need to
worry about downloading GNU Zebra, since it is part of
the RedHat distribution.

After getting the needed software, perform the following
preparatory steps.

First, install the RPM packages:

rpm -i user_mode_linux-2.4.19.5um-0.i386.rpm

rpm -i umlbuilder-1.40-5.i386.rpm

Second, copy all RPM files in the distribution CDs to a direc-
tory on the host machine (alpha). In my case, that directory is
/tmp/redhat/rpm. On the CDs, the binary RPM files are kept in
/mnt/cdrom/RedHat/RPMS (assuming the CD is mounted on
/mnt/cdrom). Those RPM files will be used by UMLBuilder.

Now create a directory for the project (/home/usenix in my
case) and copy the kernel tarballs and the UML patches to it.

Building the Root File System
The root file system for a Linux system is usually hosted by a
hard disk or a hard disk partition. It is more convenient, how-
ever, to use an ordinary file as the root file system for a UML
machine. Linux uses a special device called the loopback device
(not to be confused with the network loopback interface) to
enable dealing with an ordinary file as if it were a block device,
allowing a file to host a file system and a directory tree. Obtain-
ing a root file system for our UML machine can be done by
downloading a pre-built one from the UML home page, by cre-
ating it from scratch using basic Linux tools, or by using UML-
Builder. The approach chosen here is to rely on UMLBuilder.

Start by launching the UMLBuilder GUI from within the X win-
dow system launching and xterm and typing: UMLBuilder_gui.
Press “next” and you’ll be presented with a number of distribu-
tions to choose from. Choose RedHat 8.0. When asked about
the location of the RPMs, enter /tmp/redhat/rpm.

Now, you’ll be presented with a selection of packages to choose
from. Choose “Various Network Server Daemons (network-
server)” and press “next.” In the file system settings window,
specify the mount point for device udb0 as “/”, the size of the
file system as 400MB, and the file system type as ext2. Leave the
filename as rootfs. In the Miscellaneous Settings window, set the
hostname as ghost and the IP address as 10.20.0.1. Set root’s
password and press “next.” You’ll be asked about the location
where the files pertaining to the UML instance should be
stored. Enter /home/usenix/ghost and press “next.” All settings
will be displayed so that you can review them. If all are correct,
proceed by pressing the relevant button. The creation of rootfs
will start and might take a quite long time to finish.

After the building completes, the directory /home/usenix/ghost
should contain, among other files, the rootfs file and a shell
script called “control” that facilitates launching the UML
machine. Edit the control script so that the variables net and
hostiface are set to the values indicated below:

net="eth0=tuntap,,,10.20.0.254"
hostiface="tap0"

The second line sets the name of the host machine’s interface
linking it to the UML machine to tap0 (creates an interface on

BUILDING A VIRTUAL IPV6 LAB ●

●
N

ET
W

O
R

K
IN

G

Vol. 29, No. 1 ;login:44

alpha called tap0). The first line sets the IP address of that inter-
face to 10.20.0.254. Although our interest is IPv6 configuration,
we’ll configure IPv4 addresses for the time being so that we can
use them to test connectivity even before we start our IPv6 con-
figuration (see Figure 1 for the network’s topology).

At this stage you can launch the UML machine by typing (from
an xterm): /home/usenix/ghost/control start.

To shut down the UML machine, just type, as root: shutdown -h
now.

Keep in mind that the UML kernel used to boot the machine is
actually the binary /usr/bin/linux installed as part of the
user_mode_linux package (remember that the UML kernel is
just another user-land program). In the following section, we’ll
create our own UML kernels.

Patching and Compiling a Standard Kernel
Start by uncompressing the kernel source tree and extracting
the files in the archive:

bzip2 -d linux-2.4.20.tar.bz2
tar -xvf linux-2.4.20.tar

The directory /home/usenix/linux-2.4.20 contains the kernel
source tree.

Next, copy the patch to the kernel source tree uppermost direc-
tory and apply the patch:

cp uml-patch-2.4.20-6.bz2 /home/usenix/linux-2.4.20
cd /home/usenix/linux-2.4.20
patch -p1 < uml-patch-2.4.20-6

Now we have a UML-patched kernel, and we can start the ker-
nel configuration and compilation.

Launch the kernel configuration GUI:

make xconfig ARCH=um

(ARCH=um sets the architecture to UML instead of the default
x86 architecture.)

Under Network Options, enable IPv6 support as a module (it is,
of course equally possible to enable IPv6 support as an integral

part of the kernel rather than a module).
Disable all unneeded drivers, protocols,
and features.

Now, create the prerequisite object files:

make dep ARCH=um

Now, create the UML kernel itself:

make linux ARCH=um

If the compilation succeeds, you’ll find
an executable called linux in the direc-
tory /home/usenix/linux-2.4.20/. This is

our newly created UML kernel.

If you choose to configure some parts of the kernel as modules,
then you need to compile the modules and install them in
rootfs.

To compile the modules for the UML kernel, type:

make modules ARCH=um

To install the modules, start by making sure that the UML
machine is shut down and then mount the rootfs file:

mkdir /mnt/rootfs
mount -o loop /home/usenix/ghost/rootfs /mnt/rootfs

The commands typed above mount the rootfs file system on
/mnt/rootfs.

To install the modules in rootfs, type:

make modules_install INSTALL_MOD_PATH=/mnt/rootfs/

The name of the directory containing the modules must match
the kernel’s version, therefore:

mv /mnt/rootfs/lib/modules/2.4.20
/mnt/rootfs/lib/modules/2.4.20-6um
umount /mnt/rootfs

At this stage we have the root file system built, an IPv6-enabled
kernel built, and the associated kernel modules built and
installed.

Place your newly created UML kernel in /usr/bin:

mv /home/usenix/linux-2.4.20/linux /usr/bin/ghost

Edit the control script to launch the new kernel by changing the
line (line 126):

exec $linux $initrd umid="$name" $fs $swap
mem=$memsize $net $ux $args "$@"

to{

exec ghost $initrd umid="$name" $fs $swap
mem=$memsize $net $ux $args "$@"

Figure 1

45February 2004 ;login:

●
N

ET
W

O
R

K
IN

G

Patching and Compiling a USAGI Kernel
To create the USAGI-based UML machine, we’ll use the same
rootfs. So start by copying the ghost UML directory and editing
the control script:

cp -R /home/usenix/ghost /home/usenix/shadow

In shadow’s control script make the following changes:

net="eth0=tuntap,,,10.30.0.254"
hostiface="tap1"

Change the line (line 126):

exec $linux $initrd umid="$name" $fs $swap
mem=$memsize $net $ux $args "$@"

to:

exec shadow $initrd umid="$name" $fs $swap
mem=$memsize $net $ux $args "$@"

Now, patch and compile the USAGI kernel:

bzip2 -d usagi-linux24-stable-20021007.tar.bz2
tar -xvf usagi-linux24-stable-20021007.tar
cd usagi/

Specify the major kernel version USAGI is to be compiled for by
typing:

make prepare TARGET=linux24

Now copy and apply the patch:

cp uml-patch-2.4.19-51.bz2
/home/usenix/usagi/kernel/linux24
cd /home/usenix/usagi/kernel/linux24
patch -p1 < cp uml-patch-2.4.19-51

Now configure and compile the UML kernel just as we did with
the standard kernel:

make xconfig ARCH=um
make dep ARCH=um
make linux ARCH=um
make modules ARCH=um

With the USAGI kernel we have chosen to compile IPv6 sup-
port as part of the kernel rather than as a module.

Place your newly created USAGI UML kernel in /usr/bin:

mv /home/usenix/USAGI/usagi/kernel/linux24/linux
/usr/bin/shadow

Install the USAGI kernel modules, just as we did with the stan-
dard kernel:

mount -o loop /home/usenix/shadow/rootfs /mnt/rootfs
make modules_install INSTALL_MOD_PATH=/mnt/rootfs/
umount /mnt/rootfs

At this stage, the creation of our IPv6 UML machines is com-
pleted and it is now time to bring life to the machines.

BUILDING A VIRTUAL IPV6 LAB ●

Figure 2

Vol. 29, No. 1 ;login:46

From an xterm:

cd /home/usenix/ghost
./control ghost

After ghost completes booting, from another xterm boot
shadow:

cd /home/usenix/shadow
./control shadow

The virtual consoles of both UML machines should be appear-
ing on your screen (see Figure 2).

IPv6 Addressing, Routing, and Connectivity
Testing

ADDRESSING

We are ready now to enter the world of IPv6 networking. We’ll
start by assigning our routers their network addresses. On
ghost, load the IPv6 module:

insmod ipv6

then assign the IPv6 address:

ifconfig eth0 add 3000::1/64

which, on shadow, should be:

ifconfig eth0 add 2000::1/64

On alpha, load the IPv6 module if you have IPv6 support com-
piled as a module:

insmod ipv6
ifconfig tap0 add 3000::2/64
ifconfig tap1 add 2000::2/64

(See Figure 1.)

ROUTING

Now that we have created two UML hosts and assigned them
IPv6 addresses, we are ready to configure Zebra to perform
OSPFv3 dynamic routing. GNU Zebra provides an implemen-
tation for a number of IPv4 and IPv6 dynamic routing proto-
cols with an interface similar to Cisco’s CLI. The Zebra routing
system consists of a kernel routing table manager daemon
called zebra and a number of routing daemons, each imple-
menting an IPv4 or an IPv6 routing protocol. The manager dae-
mon zebra receives input from the protocol-specific routing
daemons and modifies the kernel routing table accordingly.
Examples of routing daemons that are part of Zebra are ospfd
and ospf6d: ospfd is the OSPFv2 routing daemon, which per-
forms OSPF routing for IPv4, and ospf6d is the OSPFv3 routing
daemon, which performs OSPF routing for IPv6. Note that
although the OSPF version designed to work with IPv6 is OSPF
version 3, the zebra OSPFv3 daemon is called ospf6d. The “6”

here indicates the IP version rather than the OSPF version.
There can be more than one protocol-specific routing daemon
running on the same host. A machine operating in a dual-stack
environment (a network in which IPv4 and IPv6 coexist) can,
for example, run ospfd and ospf6d simultaneously.

Since configuring and running zebra is a prerequisite for run-
ning any protocol-specific daemon, we’ll start with the creation
of the zebra daemon configuration file:

On ghost:

vi /etc/zebra/zebra.conf

!
! Setting the hostname for the zebra daemon
!
hostname ghostz
!
! Setting the password for the zebra daemon
!
password zebra
!
! Setting the enable password for the zebra daemon
!
enable password zebra

Note that the bangs (!) are used to add comments to the config-
uration file.

On shadow:

hostname shadowz
password zebra
enable password zebra

On alpha (the host machine):

hostname alphaz
password zebra
enable password zebra

The next step is configuring the OSPFv3 daemon.

Since our virtual network is a rather small one, all our IPv6
routers will be configured in the same area (area 0.0.0.0 or area
0). Just like OSPFv2, OSPFv3 assigns each router a unique 32-
bit router ID. In our virtual network, we’ll assign ghost the ID
0.0.0.2, shadow the ID 0.0.0.3, and alpha the ID 0.0.0.1.

To configure the OSPFv3 daemon on ghost:

vi /etc/zebra/ospf6d.conf

!
hostname ghostz
password zebra
enable password zebra
!
router ospf6

router-id 0.0.0.2

47February 2004 ;login:

redistribute static
interface eth0 area 0.0.0.0

!

On shadow:

vi /etc/zebra/ospf6d.conf

!
hostname shadowz
password zebra
enable password zebra
!
router ospf6

router-id 0.0.0.3
redistribute static
interface eth0 area 0.0.0.0

!

On alpha:

vi /etc/zebra/ospf6d.conf

!
hostname alphaz
password zebra
enable password zebra
!
router ospf6

router-id 0.0.0.1
redistribute static
redistribute connected
interface tap0 area 0.0.0.0
interface tap1 area 0.0.0.0

!

Note that we added the “redistribute connected” statement so
that alpha tells ghost about shadow (which is directly con-
nected) and tells ghost about shadow using OSPFv3.

Although we have chosen to perform the configuration through
editing the configuration files, we could have established a Tel-
net session to the daemons and configured routing using the
Cisco-like interface. This could be done by typing:

telnet localhost zebra

or

telnet localhost 2601

for zebra and

telnet localhost ospf6d

or

telnet localhost 2606

for ospf6d. Now to start OSPF routing, type the following in all
three machines:

/etc/init.d/zebra start
/etc/init.d/ospf6d start

CONNECTIVITY TESTING

To test the connectivity, ping shadow from ghost:

ping6 2000::1

Successful pinging indicates that routing is working without
problems and that we have successfully completed the construc-
tion of our IPv6 lab!

To display the IPv6 routing table, type:

route -A inet6

or:

ip -6 route show

You’ll notice that the routes obtained through dynamic routing
have a higher metric than static and directly connected routes.

You can also capture the IPv6 traffic using:

tcpdump -qtfn ip6

Increasing Topological Complexity
The IPv6 lab we have constructed is a simple one, with only
three routers and one OSPF area, but it illustrates the basic pro-
cedures needed for virtual UML networking. Creating more
complex networks can be done using nested UML machines
and the uml_switch daemon. A nested UML machine is a UML
kernel launched from within a UML machine. The uml_switch
is a daemon that simulates physical switches and can be used to
connect a number of UML machines running on the same
physical hosts. Information about nesting and the uml_switch
can be found in the UML Kernel Home Page
(http://user-mode-linux.sourceforge.net).

Conclusion
This article shows how to use User-mode Linux (UML) to build
a simple IPv6 lab on a laptop (a lab in the lap). OSPFv3 was
enabled to perform dynamic routing among the three IPv6
routers in our virtual network. Virtual UML networking is par-
ticularly valuable when it comes to studying and experimenting
with new technologies like IPv6 when not enough test machines
are available. In addition, UML virtual networking is more cost-
effective, takes much less space, and allows rapid prototyping
and experimentation portability.

BUILDING A VIRTUAL IPV6 LAB ●

●
N

ET
W

O
R

K
IN

G

