
Vol. 29, No. 1 ;login:

Dear Editor,

I found the “one up on LRU” article in
the August 2003 ;login: issue (Vol. 28,
No. 4) to be difficult to understand, even
after several readings and consulting the
original paper in the FAST proceedings.
I sensed on my first reading that
Megiddo and Modha are presenting an
important result that will be widely
implemented and eventually be incorpo-
rated into every undergraduate CS pro-
gram.

This caused me to reread and study the
paper until I got a better understanding.
For my own benefit, I decided to write
my own interpretation of the paper and
am providing it to ;login: in the hope
that it will be of benefit to other readers
(provided that it is an accurate interpre-
tation).

Here is my interpretation:

The primary objective of a cache man-
agement system is to hold those pages in
cache that are most likely to be reused in
the near future. In an ideal system, pages
that will be used only once in a while
will never be cached, since they will not
be reused in the near future. The focus
of the system now becomes one of man-
aging those pages that will be seen again
in the near future. Although not quite
ideal, the Least Recently Used (LRU)
algorithm is a simple and effective solu-
tion for handling those pages that will
be used twice or more, since any page
that is used twice will likely be used
again (from empirical observation and
captured in the Principle of Locality).
However, it is extremely difficult if not
impossible to determine in advance that
a page will be used only once.

The basic idea of the ARC system is to
divide the cache into two parts: one part
for pages that have been used only once
and one part for pages that have been
used twice or more. Any request for a
page that previously had been used only

once causes that page to be reassigned to
the other part of the cache, the part with
pages that have been used twice or more.
Separate LRU lists are used to track the
pages in the cache: T1 (using the
nomenclature from the ARC paper) for
the pages that have been used only once
recently and T2 for those pages that have
been used twice or more.

The challenge is to determine how big to
make each of the two parts. If the target
size for the part managed by the T1 list
(called target_T1 in the paper) is too
large, then pages that deserve to stay in
the cache, because they have been used
frequently recently, have been prema-
turely ejected. If target_T1 is too small,
then a page may be ejected before its
second request. The solution in ARC is
to keep a list of recently ejected pages for
each of T1 and T2 (called B1 and B2,
respectively). If the requested page is in
B1, then it is likely that target_T1 is too
small and so ARC increments target_T1
by one. If the requested page is in B2,
then it is likely that target_T1 is too
large and so ARC decrements target_T1.
That is, ARC dynamically adjusts tar-
get_T1 based on recent access patterns
before loading the requested page into
cache and putting it on the T2 list.

Note that a request for a page on B2
(which causes target_T1 to decrease)
does not necessarily result in a page on
the T1 list being ejected from cache.
Consider the case where there were sev-
eral requests in a row for pages on the
T1 list, which would have resulted in
those pages being moved from the T1
list to the T2 list without any change in
target_T1. Even with the decrement of
target_T1 due to the request for a page
on B2, the T1 part of the cache is still
below the target, so a page from the T2
list is ejected from cache.

There is one more case that has not yet
been discussed: the case where the
requested page has not been used at all
recently. That is, the requested page is

letters to the editor

4

neither in the cache (i.e., not in T1 or
T2) nor on the history lists (i.e., not in
B1 or B2). Before ARC can load the
requested page into the T1 part of the
cache, it must decide which page to eject
from the cache and which page to eject
from history. If adding the requested
page to T1 will cause T1 to exceed the
target_T1, then ARC ejects the LRU page
of T1 from the cache; otherwise, it ejects
the LRU page of T2 from the cache. In
other words, ARC allows the T1 part of
the cache to grow until it reaches the tar-
get_T1 size. Similarly, if adding the
requested page causes the number of
pages that have been seen only once (i.e.,
in T1 and B1) to exceed the size of the
cache (c in the paper), then the LRU
from B1 is deleted; otherwise the LRU of
B2 is deleted. Note that the reason c was
selected as limit for the number of pages
used only once recently (i.e., T1 + B2) is
that tracking more pages would imply
that, even if the whole cache were being
used for pages only seen once recently,
the pages being requested for the second
time would already have been cycled out
of the cache (this is my conjecture).

This raises the question of how much
history should be kept. (The following is
my conjecture.) As discussed in the pre-
vious paragraph, the number of pages
that have been seen only once that are
being tracked (i.e., T1 + B1) is limited to
c (the size of the cache). Since there is a
balance being sought between tracking
of pages that have been used only once
recently and those that have been used
twice or more, it can be concluded that
no more than 2c pages should be
tracked in total. That is, T1 + B1 + T2 +
B2 should be less than or equal to 2c.

Note that T2 + B2 can exceed c, even
though T1 + B1 cannot exceed c. This is
because pages can move from T1 to T2,
but not back again (without being com-
pletely recycled). That is, the ARC algo-
rithm is never going to eject a page in
cache unless it needs room to load

another page (since a request for a page
from T1 results in it being reassigned to
T2 without any cache movement).

This provides us with all the informa-
tion required to construct the ARC algo-
rithm, which manipulates the four lists
(T1, T2, B1, and B2) and the cache when
a page p is requested using one of the
following five cases:

p is on T2:
Use the page again
move p to MRU(T2)

p is on T1:
This is an OK cache hit
move p from T1 to MRU(T2)

p is on B1:
Need to get it in the cache
so allocate more space for T1
increment target_T1
if T1’s part is full

i.e., size T1 >= target_T1
move LRU(T1) to MRU(B1)
eject MRU(B1) from cache

else
move LRU(T2) to MRU(B2)
eject MRU(B2) from cache

endif
move p from B1 to MRU(T2)
load p into cache

p is on B2:# (similar to B1)
Darn, wish it was in the cache
... so deallocate space for T1
decrement target_T1
if T1's part is full

i.e., size T1 >= target_T1
move LRU(T1) to MRU(B1)
eject MRU(B1) from cache

else
move LRU(T2) to MRU(B2)
eject MRU(B2) from cache

endif
move p from B2 to MRU(T2)
load p into cache

p has not been used recently:
i.e., it is not on T1, T2, B1 nor B2
if seen once list is full

i.e., T1 + B1 = c
if B1 has entries

delete LRU(B1)
if T1's part is full

i.e., size T1 >=
target_T1

5February 2004 ;login:

move LRU(T1) to
MRU(B1)

eject MRU(B1) from
cache

else
move LRU(T2) to

MRU(B2)
eject MRU(B2) from

cache
endif

else# B1 is empty
eject LRU(T1) from cache
delete LRU(T1)

endif
else

if cache is full
if too much history being

kept
delete LRU(B2)

endif
if T1’s part is full

i.e., size T1 >=
#target_T1
move LRU(T1) to

MRU(B1)
eject MRU(B1) from

cache
else

move LRU(T2) to
MRU(B2)

eject MRU(B2) from
cache

endif
endif

endif
insert p into MRU(T1)
load p into T1

Note that I had to inline a “replace” sub-
routine here in order to see all the list
and cache manipulations together (they
are divided between two routines in the
paper [and are on backing pages in
;login:!]). I also relegated the handling of
dirty pages to the eject function, since it
is not really germane to the new con-
cepts introduced by ARC.

Regards

Henry Baragar
henry.baragar@instantiated.ca

Principal, Technical Architecture
Instantiated Software Inc.

The authors respond:

This letter will be of value and interest
to readers of ;login:. However, there is
one subtle point of ARC that the author
has not captured. Inclusion of this will
make the exposition complete. The fol-
lowing is known as the “learning rule”
and is a very important part of making
the algorithm work:

Upon a hit in B1, the parameter tar-
get_T1 is incremented by a maximum of
1 or B2Length/B1Length. But target_T1
can never exceed the cache size. Simi-
larly, upon a hit in B2, the parameter
target_T1 is decremented by a maxi-
mum of 1 or B1Length/B2Length. But
target_T1 must be nonnegative.

Nimrod Meggiddo and
Dharmendra S. Modha

###

Tina,

I got my copy of ;login: this morning
and read your “Value Added” article
(;login: Vol. 28, No. 5, p. 4). One would
think what you wrote goes without say-
ing.

However, imagine a world that was
invaded by idiots in the desperate belief
by some that a warm body was better
than no body, and a day when candi-
dates and employees could name their
prices (often petty) regardless of skill
and what-not, which has now evolved
into a world where many people are
working harder than ever, are fearful of
losing their job, and are, at times,
rewarded with management that
believes employees have nowhere to go
and that there are plenty of qualified
people to replace them.

Oh, that’s right. That happened to our
world.

So, yes, it needed to be said. Partly to
acknowledge the mistakes of the past
and present, but also to remind everyone

LE
TT

ER
S

Vol. 29, No. 1 ;login:

of the value the people-who-answer-
questions have. And that they help make
the world something you can live with
and even enjoy – fighting off that nasty
stuff.

It’s funny to me – to one of your other
points – that there is no specific func-
tional classification for these values-ori-
ented individuals. Some are adminis-
trative assistants; some are system
administrators; others are programmers;
and some are even managers, directors,
and VPs. By “function” anyway. To me,
these people are really generalists of the
human race, and I know because I’m
one of them. I don’t think I’m at the top
of the ladder. But I’m lucky. I’m appreci-
ated very much for what I do and am.

Being one, and being a manager and
benefactor of these Beings with Values, I
first of all wanted to say all of this. Then
I had to be a nit picker and tell you that I
saw two other attributes that deserve
mention as well (after all, you had to
cram this into a single column):

1. Teamwork. There are lots of people
who can answer a variety of questions
competently, but they don’t play well
with others. Those who do this task
willingly and even cheerfully and
with passion are the most valued and
enjoyed of all.

2. Diplomacy & honesty. The diplomacy
is a given and relates to teamwork: if
people don’t like the way you talk to
them, they won’t come and ask you
questions until they are damned des-
perate. The honesty is twofold and the
premise is credibility. First, self-hon-
esty: knowing what your value is and
not over- or under-stating it (which is
difficult). Second, honesty toward
others but with a touch of diplomacy
when required.

Debby Hungerford
debby-h@pacbell.net

6

RENEW ONLINE TODAY!
Renewing or updating your USENIX
membership has never been easier!

You will receive your renewal notice via
email and one click will take you to an

auto-filled renewal form.

Or visit
http://www.usenix.org/membership/

and click on the appropriate links.
Your renewal will be processed instantly.

Your active membership allows the Associ-
ation to fulfill its mission.

Thank you for your continued support!

