
THE MAGAZINE OF USENIX & SAGE
April 2003 • volume 28 • number 2

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

Turoff: Practical Perl: Fixing Broken Modules

48 Vol. 28, No. 2 ;login:

practical Perl
fixing broken modules

Introduction
I recently worked on a project where I needed to make

some bug fixes to some locally written Perl modules. To

make my changes, I fixed and tested a local copy of

these modules, modifying Perl’s search path to find my

copy of them instead of the buggy versions. Modifying

Perl’s search path is an excellent way to test experimen-

tal code without the hassle of installing each fix, or

impacting other users on the same system.

Dynamic languages like Perl, Python, and Ruby all have one
very important feature in common: Programs written in these
languages are distributed in source form. This is a great boon to
software developers who need to debug a system after it is
installed. A Perl programmer can examine a large Perl applica-
tion and see exactly how it works and even make changes, if
necessary. Debugging an installed application written in Perl is
trivial. Debugging a program written in C, C++, or Java is more
difficult, especially if the original source code is lost, misplaced,
or otherwise unavailable.

Access to a program’s source code eases repair. Once I find a
bug in a Perl program that needs fixing, I can easily copy the
program, make a change, and test the updated program. I can
then replace the original program with my fixed version if I
have write access to the appropriate directories. If I do not have
sufficient permissions to upgrade the program, I can maintain
the updated program in a local portion of my path while I wait
for installation issues to be sorted out. In the worst case, I can
update my PATH environment variable to find my updated
program before the existing version.

Fixing a broken library module is a similar process, but slightly
more complicated. If I do not have write permission to the
library module directories, then I cannot install the update.
Even if I could, there are good reasons not to update a module
that could be used by many programs and users on a system. It
is entirely possible that my blindly overwriting an existing mod-

ule with my updated version will fix my program, but it will
also break a great many other programs in use.

If I want to install an updated module locally, I need to update
Perl’s module search path to find my update before the preexist-
ing version. Because this is Perl, there’s more than one way to do
it. Which technique I will use will depend on the situation.

Perl’s Module Search Path
Perl processes programs in two phases: compile time and run-
time. During compile time, Perl ensures that your program is
syntactically correct and performs other operations, like loading
modules. Once this process is complete, the runtime phase
begins and Perl starts to execute your program statements.

During compile time, Perl includes external modules by looking
through a list of directories named by @INC until it finds an
appropriate file to load. To include modules from a specific
directory, update @INC during compile time and before use
statements are processed. Modifying @INC at runtime will have
no impact since the program has been compiled and all use
statements have already been processed.

By default, Perl looks in one of two general file-system areas
when a module is to be loaded. Core modules (the ones that are
bundled with Perl) are stored in $PREFIX/lib/perl5, where $PRE-
FIX is the base of the Perl installation, like /usr, /usr/local, or
/opt. Additional modules, like those installed from CPAN, are
stored in $PREFIX/lib/site_perl. These directories may also
include subdirectories containing Perl’s version number (e.g.,
5.005_03, 5.6.1, or 5.8.0) and subdirectories containing the
current platform architecture (i386-freebsd, darwin, etc.).

If a module is not found in any of these locations, Perl will look
in the current directory. If Perl still cannot find a module, it will
terminate processing the program and report a fatal error.

Whenever Perl is loading a module, it looks for the first match-
ing module encountered in the list that is the search path. If I
want to override a previously installed module, I must place it
in a directory that will appear before the normal module search
directories.

Updating the Module Search Path
There are many ways to update the module search path. One
way is to use the PERL5LIB environment variable. Using envi-
ronment variables to change Perl’s behavior is generally dis-
couraged, because “opaque” settings are hard to notice,
especially by a casual maintainer; besides, they can vary on a
per-user or per-terminal basis. Sometimes, setting PERL5LIB is
the best way to update the module search path, like communi-
cating with Perl subprocesses.

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long- time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

49April 2003 ;login:

�

PR

O
G

RA
M

M
IN

GPERL5LIB adds new library directories to the front of the mod-
ule search path. It can contain a series of colon-delimited direc-
tories:

[ziggy@duvel ~]$ mkdir newlib1 newlib2
[ziggy@duvel ~]$ export PERL5LIB=newlib1:newlib2
[ziggy@duvel ~]$ perl -le 'print join("\n", @INC)' newlib1
newlib2
/opt/lib/5.8.0/darwin
/opt/lib/5.8.0
/opt/lib/site_perl/5.8.0/darwin
/opt/lib/site_perl/5.8.0
/opt/lib/site_perl

Whenever a directory in PERL5LIB contains a subdirectory that
matches the current platform architecture, that platform-spe-
cific directory will also be added to the search path. This is also
the location where compiled C extensions will be installed.

[ziggy@duvel ~]$ mkdir newlib2/darwin
[ziggy@duvel ~]$ export PERL5LIB=newlib1:newlib2
[ziggy@duvel ~]$ perl -le 'print join("\n", @INC)' newlib1
newlib2/darwin
newlib2
/opt/lib/5.8.0/darwin
/opt/lib/5.8.0
/opt/lib/site_perl/5.8.0/darwin
/opt/lib/site_perl/5.8.0
/opt/lib/site_perl

Another way to extend the module search path is to use Perl’s -I
command line switch. Adding multiple -I switches when invok-
ing Perl will add multiple directories (and version-specific sub-
directories) to @INC. Note that adding -I switches on the
command line will prepend directories to @INC, while using -I
on the shebang (#!) line will append directories to the end of
@INC:

[ziggy@duvel ~]$ cat > test.pl
#!/usr/bin/perl -lw -Inewlib2
print join("\n", @INC);
^D
[ziggy@duvel ~]$ perl -Inewlib1 test.pl
newlib1
/opt/lib/5.8.0/darwin
/opt/lib/5.8.0
/opt/lib/site_perl/5.8.0/darwin
/opt/lib/site_perl/5.8.0
/opt/lib/site_perl
.
newlib2/darwin
newlib2
[ziggy@duvel ~]$

With this behavior, using -I on the shebang line is sufficient for
adding a module directory to @INC to find modules that are not
stored in the core or site module directories. If you want to
include a directory in @INC to supersede the modules installed
elsewhere on the system, you must specify -I on the command
line when invoking Perl.

A third way to add directories to @INC is to modify @INC
directly at compile time. One way to do this is to modify @INC
in a BEGIN block, so that it will be modified before modules are
loaded:

#!/usr/bin/perl -lw
BEGIN {unshift(@INC, "newlib1", "newlib2"); } print
join("\n", @INC);

No output is produced.

Using BEGIN blocks and directly tweaking @INC works, but it is
ugly and obscure. A better way to perform the same task is to
use a use lib; declaration instead. This declaration is processed
at compile time, before modules are loaded. The use lib; decla-
ration does exactly what it says — prepends another library
path to the list of module search paths.

[ziggy@duvel ~]$ perl -lw
use lib qw(newlib1 newlib2);
print join("\n", @INC);
^D
newlib1
newlib2
/opt/lib/5.8.0/darwin
/opt/lib/5.8.0
/opt/lib/site_perl/5.8.0/darwin
/opt/lib/site_perl/5.8.0
/opt/lib/site_perl
.

Note that use lib; declarations can insert directories at the front
of @INC, but each directory must be explicitly added. Only
PERL5LIB and perl -I can automatically add a platform-specific
subdirectory to @INC to find compiled modules.

Using Local Module Directories
Updating the module search path has a great many uses. The
most common use is to load modules from an application-spe-
cific library directory. Installing modules in a local library
makes it easy to quickly modify an application’s modules when
it is in development. This eliminates the need to go through the
module-install process for each update.

If you cannot or do not want to add modules to the standard
module library, you can install modules elsewhere and find
them with a use lib; declaration. This is a great way to test mod-

PRACTICAL PERL �

Vol. 28, No. 2 ;login:50

ules before installing them, or install modules in a central loca-
tion on a system where you cannot install a module in the nor-
mal site-wide location.

Fixing a Broken Module
One of the lesser-known ways to use a local library directory is
to fix a broken module. Because I can create a local module
library directory and configure Perl to look there for modules, I
can make a copy of a broken module and fix it. I can update
programs to look for this fixed module, or invoke Perl using
PERL5LIB or perl -I to find my fixed module.

Consider this little module, which misbehaves and emits an
obnoxious number of status messages:

package Sample;
use strict;
$|++; ## Turn on auto flushing
sub new {

print STDOUT "Creating a new object\n";
my $object = {};
bless $object, __PACKAGE__;
$object->load_config();
return $object;

}
sub load_config {

print STDOUT "Loading configuration file\n";
my %config;

$/ = "\n"; ## Read in a series of lines
open(F, "/etc/Sample.conf");
while (<F>) {

chomp;
s/#.*$//;
s/s+/ /;
next unless m/^(.*?)=(.*)$/;
$config{$1} = $2;

}
return %config;

}
...
1;

This module contains a few errors I want to fix. I start by copy-
ing Sample.pm from its location in /opt/lib/perl5/5.8.0 to my
local module directory, ~/fixed-modules/. I then make my
changes to ~/fixed-modules/Sample.pm.

In some cases, I could fix this module by writing a new module
and inheriting from Sample.pm. However, the problems that I
want to fix are endemic and cannot be fixed effectively without
rewriting the entire module.

Another approach would be to create a fix to this module and
rename it as FixedSample.pm. If I have several programs that
use the Sample module, then I will have a lot of programs to

update to use FixedSample instead. By making a fixed version
of Sample available, I can continue to use existing programs
with little or no modifications to those programs.

The first error I need to fix is the modification of the $| special
variable at the beginning of the module. This global variable
controls “auto flushing,” or automatically flushing data sent to
STDOUT instead of buffering it. Modification to $| is usually a
global change in program behavior. Methods in this module
may want to have output to STDOUT flushed immediately, but
other portions of this program may rely on STDOUT being
buffered. Changing global behavior like this is bad style when
writing a module.

A better way to flush output to STDOUT within a module is to
modify the value of $| locally. This can be done by making a
local copy of $| within a sub and modifying that copy:

sub new {
Turn on autoflushing only within this sub
local $| = 1;
print STDOUT "Creating a new object\n";
...

}

There is a similar problem in load_config(). It modifies the $/, or
input record separator. Within load_config(), this variable needs
to be a newline character (the default value). Another portion
of the program may need a different behavior, like reading in an
entire file at once, or reading in one block at a time. These
behaviors are defined by setting $/ to undef or the empty string.
Calling load_config() will change this global behavior and may
inadvertently impact other portions of the program.

Fixing this buggy behavior also requires making a local modifi-
cation to the value of $/:

sub load_config {
turn on autoflushing locally
local $| = 1;
print STDOUT "Loading configuration file\n";

my %config;
Read in a series of lines within this sub
local $/ = "\n";
...

}

Another problem I want to fix deals with opening the configu-
ration file. Remember that file handles in Perl are global vari-
ables. The configuration file is opened using the file handle fh,
which is a very common name for a file handle. If my program
already has an open file handle called fh, then load_config() will
close it and open up another file instead. I could fix this prob-
lem by choosing a better name for my file handle. A better solu-

51April 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gtion would be to use a lexical file handle, or a file handle that
exists only within this sub:

sub load_config {
...
open (my $fh, "/etc/Sample.conf");
while (<$fh>) {

...
}
...

}

After I make these changes, my copy of the Sample module will
be well behaved. But it still emits an obnoxious number of log
messages. I don’t need to see them, and I would like to eliminate
them. Here is what my fixed version of this module looks like
after I’ve removed the unnecessary print statements:

package Sample;
use strict;
sub new {

my $object = {};
bless $object, __PACKAGE__;
$object->load_config();
return $object;

}
sub load_config {

my %config;
local $/ = "\n";
open(my $fh, "/etc/Sample.conf");
while (<$fh>) {

chomp;
s/#.*$//;
s/s+/ /;
next unless m/^(.*?)=(.*)$/;
$config{$1} = $2;

}
return %config;

}
...
1;

With an updated version of my module, all I need to do now is
use it in my programs. I can do this in a number of ways. I can
modify programs that I explicitly want to use this module by
adding a use lib ‘$ENV{HOME}/fixed-modules’;. If I do not want
to modify my Perl programs, I can use perl -I~/fixed-modules
when invoking programs that use this module, or set PERL5LIB
to include ~/fixed-modules. Any of these techniques will allow
me to override Sample.pm with my copy.

Annotating Unfamiliar Modules
Periodically, I need to fix a module I have never seen before. I
might be able to isolate a problem using the Perl debugger, but

any insights I gain will probably be lost by the time I finish a
debugging session. I could write them down on paper or online
somewhere, but there is no guarantee I’ll have that paper or file
available when I need it again. Usually, it will be sitting on my
desk at home when I am at work, or sitting on my desk at work
when I am at home.

A better solution would be to comment on the program’s
source code directly. In this situation, I probably do not want to
update the installed module directly, but I can comment on a
module if I create a local copy and annotate that copy. If my
changes are useful, then I can easily create a patch to send back
to the module’s author.

Another modification I can make locally is to normalize a mod-
ule’s coding style. Many module suites are written by multiple
programmers over a period of time. Sometimes the style of
each author will vary, or the coding style is so different from my
own that it makes the module difficult to read.

I’d rather fix a problem than complain about coding style. If I
make a local copy of a module, I can process it using a code for-
matter like perltidy and apply a single, readable style to one or
more modules. My goal here is to understand how a module
works, not to start a flame war over style. By loading my refor-
matted version of the modules, I can also use them when
debugging a program. Once I understand how the module
works, I can patch the original version of the module.

Conclusion
Because Perl programs and Perl modules are distributed as
source code, it is easy to take an existing program and modify it
to quickly fix a bug. This kind of fast turnaround helps you
solve a problem before the boss fires you.

Fixing modules takes a little more effort than fixing a broken
program, but it can be done. The key to fixing a broken module
rests with loading modules from a local directory, and updating
Perl’s module search path, @INC, to find the updated modules.

PRACTICAL PERL �

