
THE MAGAZINE OF USENIX & SAGE
April 2003 • volume 28 • number 2

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
SYSADMIN

Pierzchala: Compressing Web Output Using mod_gzip and Apache

69April 2003 ;login:

�

SY

SA
D

M
IN

1. The servers used for this article were from the
Apache 1.3.x family.

by Stephen
Pierzchala

Stephen Pierzchala is
senior diagnostic
analyst for Keynote
Systems in San
Mateo, CA. He
spends his time
reminding Web
developers about the
need for Web perfor-
mance.

stephen@pierzchala.com

Web-page compression is not a new technology but has only recently

gained higher recognition in the minds of IT administrators and managers

because of the rapid return on investment it generates. Compression exten-

sions exist for most of the major Web server platforms, but in this article I

will focus on the Apache and mod_gzip solution.

The idea behind GZIP-encoding documents is very straightforward. Take a file that is
to be transmitted to a Web client and send a compressed version of the data rather
than the raw file as it exists on the file system. Depending on the size of the file, the
compressed version can run anywhere from 20% to 50% of the original file size.

In Apache, this can be achieved using a couple of different methods. Content negotia-
tion, which requires that two separate sets of HTML files be generated – one for clients
that can handle GZIP-encoding and one for those that can’t – is one method. The
problem with this solution should be readily apparent: There is no provision in this
methodology for GZIP-encoding dynamically generated pages.

The more graceful solution for administrators who want to add GZIP-encoding to
Apache is the use of mod_gzip. I consider it one of the overlooked gems for designing
a high-performance Web server. Using this module, configured file types – based on
file extension or MIME type – will be compressed using GZIP-encoding after they
have been processed by all of Apache’s other modules, and before they are sent to the
client. The compressed data that is generated reduces the number of bytes transferred
to the client, without any loss in the structure or content of the original, uncompressed
document.

mod_gzip can be compiled into Apache as either a static or dynamic module; I have
chosen to compile it as a dynamic module in my own server.1 The advantage of using
mod_gzip is that this method does not require anything to be done on the client side
to make it work. All current browsers – e.g., Mozilla, Opera, Internet Explorer –
understand and process GZIP-encoded text content.

On the server side, all the server or site administrator has to do is compile the module,
edit the appropriate configuration directives that were added to the httpd.conf file,
enable the module in the httpd.conf file, and restart the server. In less than 10 minutes,
you can be serving static and dynamic content using GZIP-encoding without the need
to maintain multiple code bases for clients that can or cannot accept GZIP-encoded
documents.

When a request is received from a client, Apache determines if mod_gzip should be
invoked by noting if the Accept-Encoding: gzip HTTP request header has been sent by
the client. If the client sends the header, mod_gzip will automatically compress the
output of all configured file types when sending them to the client.

This client header announces to Apache that the client will understand files that have
been GZIP-encoded. mod_gzip then processes the outgoing content and includes the
following server response headers:

compressing Web
output using
mod_gzip and
Apache

COMPRESSING WEB OUTPUT �

70 Vol. 28, No. 2 ;login:

Content-Type: text/html
Content-Encoding: gzip

These server response headers announce that the content returned from the server is
GZIP-encoded, but that when the content is expanded by the client application, it
should be treated as a standard HTML file. Not only is this successful for static HTML
files, but it can be applied to pages that contain dynamic elements, such as those pro-
duced by Server Side Includes (SSI), PHP,2 and other dynamic page-generation meth-
ods. You can also use it to compress your Cascading Style Sheets (CSS) and plaintext
files. My httpd.conf file sets the following configuration for the file types handled by
mod_gzip:

mod_gzip_item_exclude file \.js$
mod_gzip_item_exclude mime ^application/.*$
mod_gzip_item_exclude mime ^image/.*$
mod_gzip_item_include file \.html$
mod_gzip_item_include file \.shtml$
mod_gzip_item_include file \.php$
mod_gzip_item_include file \.txt$
mod_gzip_item_include mime ^text/.*$

I have had limited success compressing other file formats, mainly because Microsoft’s
Internet Explorer appears to examine the “Content-Type” header message before it
examines the “Content-Encoding” header message. So, say you configure your server
to GZIP-encode PDF files using the following mod_gzip directives:

mod_gzip_item_include file \.pdf$
mod_gzip_item_include mime ^application/pdf$

When downloaded by Mozilla and Opera, the PDF files are immediately decoded and
passed to the appropriate helper application. These browsers know to decode all GZIP-
encoded content before passing it along to the appropriate helper application.

However, Internet Explorer simply passes the GZIP-encoded content directly to the
PDF reader without first decoding it. A quick rummage through newsgroup archives
turned up evidence that this “feature” has been in Internet Explorer since at least 1997.
I chalk it up to the lingering integration of browser and operating system through the
Component Object Model (COM). This has a potentially detrimental impact on the
Web community as a whole range of additional file types could be compressed if this
bug was fixed.

How beneficial is sending GZIP-encoded content? In some simple tests I ran on my
Web server using WGET, GZIP-encoded documents showed that even on a small Web
server there is the potential to produce a substantial savings in bandwidth usage. For
http://www.pierzchala.com/bio.html, uncompressed file size was 3122 bytes, com-
pressed was 1578 bytes. And for http://www.pierzchala.com/compress/homepage2.html,
uncompressed file size was 56279 bytes, compressed was 16286 bytes.

Server administrators may be concerned that mod_gzip will place a heavy burden on
their systems as files are compressed on the fly. I argue against that, pointing out that
this does not seem to concern the administrators of Slashdot (http://slashdot.org/), one
of the busiest Web servers on the Internet, who use mod_gzip in their very high-traffic
environment.

The mod_gzip project page is located at SourceForge:
http://sourceforge.net/projects/mod-gzip/.

2. PHP can also be compressed using the inte-
gration with the native ZLIB compression
libraries. This integration can be built in at
compile time and activated through the php.ini
file.

http://www.pierzchala.com/bio.html
http://www.pierzchala.com/compress/homepage2.html
http://slashdot.org/
http://sourceforge.net/projects/mod-gzip/

