
THE MAGAZINE OF USENIX & SAGE
April 2003 • volume 28 • number 2

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

McCluskey: Examining the C# “Hello, World” Program

37April 2003 ;login:

�

PR

O
G

RA
M

M
IN

G

In our introductory C# column, we discussed some of

the background and context for the C# language, in

particular how C# fits into the .NET Framework. In this

column we’ll start describing the C# language itself.

The Hello Program
Let’s look first at the C# version of the “Hello, world” program.
This is a trivial application but one we can use to tie down
many of the C# basics. Here’s the code:

using System;

class Hello {
static void Main() {

Console.WriteLine("Hello, world!");
}

}

We’re going to assume the use of the Microsoft SDK in our dis-
cussions. Given this, we compile and execute the program by
saying:

$ csc Hello.cs
$ Hello

The compilation produces an EXE file. This file is very small
(3072 bytes) and is not self-contained. It depends on the pres-
ence on the local system of the .NET JIT (just-in-time com-
piler), as discussed in the introductory column. The csc
compiler generates opcodes in an intermediate language, and
the opcodes are stored in the EXE. When the EXE is executed at
some later time, the JIT is used to translate the intermediate
language into machine language.

We put our Hello program in a source file Hello.cs. But there’s
no file-naming requirement implied by doing so; we can instead
say:

$ cp Hello.cs xyz.cs
$ csc xyz.cs
$ xyz

and it will still work.

Another point about this example is that there is a distin-
guished method named Main() in a C# program, used as the
entry point for program execution. Main is a static method in
the Hello class, “static method” meaning that the Main method
does not operate on instances of the Hello class but is part of
the class for packaging purposes. In this particular example, we
don’t actually create any Hello class objects. For languages like
C++ and C#, using a class as a packaging vehicle for static
methods and data is a common program-structuring technique.

Classes are a basic unit of composition and design in C#. C#
programming consists of the development of new types, real-
ized via classes and the related struct and interface mechanisms,
along with use of standard types such as System.String.

The Main method is called to begin execution of the Hello pro-
gram, and there’s a single statement to execute. Console is a
class found in the System namespace, and the “using System”
statement says that the types found in this namespace are made
available to the Hello program. If we got rid of the using state-
ment, we’d need to say:

System.Console.WriteLine("Hello, world!");

Using statements is very convenient but can sometimes pollute
the application with extraneous and conflicting names.

Namespaces are another basic design mechanism for C# pro-
grams; they serve to collect and segregate names in a large
application. In our example, we refer to the System namespace.
There’s also a single global namespace to which the Hello type is
added, given that we don’t specify a namespace for the Hello
class. We could instead say:

namespace ABC {
class Hello {

...
}

}

to put the Hello class into the ABC namespace.

Actual output from the Hello program is done by the WriteLine
method. This is a static method that is part of the Console class
found in the System namespace. It writes output to standard
output and is equivalent to:

Console.Out.WriteLine("Hello, world!");

in which the stream (In, Out, Error) is specified. I/O occurs
using standard streams, and I can redirect the output in the
usual way:

$ Hello > out

examining the C#
“hello, world” program
by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

EXAMINING THE C# “HELLO, WORLD” PROGRAM�

Vol. 28, No. 2 ;login:38

For the statement:

System.Console.Out.WriteLine("Hello, world!");

System is a namespace, Console a class in that namespace, Out
a static stream object of class TextWriter in the Console class,
and WriteLine a method in the TextWriter class.

Command-Line Arguments and Exit Codes
Let’s go on and look at another program, this one a variation of
the Hello program. It illustrates some additional C# features.

Suppose that you’d like to write the Hello program, but instead
of the output going to standard output, you want to specify the
output file on the command line, and have output written to
that file. How can you do this? Here’s an example:

using System;
using System.IO;

class FileIO {
static void Main(string[] args) {

if (args.Length != 1) {
Console.Error.WriteLine("missing filename");
Environment.Exit(1);

}

try {
StreamWriter sw = new StreamWriter(args[0]);
sw.WriteLine("Hello, world!");
sw.Close();

}
catch {

Console.Error.WriteLine("couldn’t open file");
Environment.Exit(1);

}
}

}

Command-line arguments are represented by an array of
strings. If there’s no command-line argument specified, the
program writes an error message to standard error and exits
with a non-zero status.

Otherwise, the StreamWriter class is used to perform output to
a file. Note that StreamWriter operations are wrapped in a
try/catch block. This is done because C# uses exceptions to sig-
nal error conditions: for example, failure to open a text file for
writing. We use the try/catch block to catch any exception that
is thrown. If there is no try/catch block, and an invalid file is
specified, the program will terminate with an unhandled-excep-
tion diagnostic.

Character Encodings
C# uses the Unicode 16-bit character set. However, in our
examples so far, we’ve implicitly assumed that ASCII is being
used: for example, when redirecting output to a file. How does

this work? C# I/O uses encodings to map Unicode into other
character sets. For example, when you run this little program:

using System;
using System.IO;

class Encode {
static void Main() {

StreamWriter sw = new StreamWriter("out");
Console.WriteLine("file encoding is: "

+ sw.Encoding);
sw.Close();

}
}

the result is:

file encoding is: System.Text.UTF8Encoding

Roughly speaking, the UTF-8 encoding maps Unicode charac-
ters with 7-bit ASCII values into the corresponding ASCII char-
acters, and other Unicode characters into two or three bytes. So
C# can use Unicode and still be compatible with ASCII. A simi-
lar mechanism is used in Java I/O.

Applications with Multiple Source Files
Suppose that you’d like to write the Hello program, but as part
of a more elaborate system whereby messages are logged to a
file along with a timestamp. How might this be done?

In such a case it is worth defining your own C# class. Instances
of the class represent an open file, to which messages are being
logged. Here’s what the code looks like:

// MainFile.cs

class MainFile {
static void Main(string[] args) {

FileLogger flog = new FileLogger(args[0]);
flog.write("Hello, world!");
flog.close();

}
}

// FileLogger.cs

using System;
using System.IO;

class FileLogger {
private StreamWriter sw;

public FileLogger(string fn) {
sw = new StreamWriter(fn);

}

public void write(string msg) {
sw.WriteLine(DateTime.Now + ": " + msg);

}

39April 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gpublic void close() {
sw.Close();

}
}

You compile this program by saying:

$ csc MainFile.cs FileLogger.cs

Compilation units can depend on each other. For example, the
MainFile class uses the FileLogger class, defined in a separate
file.

When you run the program, by saying:

$ MainFile outlog

the result written to the log file is something like this:

11/29/2002 10:33:35 AM: Hello, world!

This particular application does not handle exceptions via
try/catch. If you specify an invalid log file name, for example:

$ MainFile .

the program will abort, and display a stack traceback for the
unhandled exception.

Browsing System Types
There’s one final area we’d like to look at in our discussion of
the C# Hello program. Earlier we mentioned the System.Con-
sole class, a standard class used for console I/O. How can you
know what the standard classes are? Obviously, you can consult
reference books, browse online documentation, and look at
Web sites.

But there’s another way to find out what standard types are
available, using the reflection features of C#. You can write a C#
program that essentially asks itself what types it knows about
and displays the names of those types.

Here’s some code that does this:

using System;
using System.Reflection;

class DumpTypes {

// Display a help message and exit.

private static void dohelp() {
Console.WriteLine("Usage: [-h|-help] " +

"[-dumpmem|-m] [-t|-type targ_type] patt1 patt2 ...");
System.Environment.Exit(0);

}

// Filter a string to determine if it contains
// patterns specified on the command line.

private static bool filter(string str, string[] args, int argi) {
str = str.ToLower();

for (int i = argi; i < args.Length; i++) {
if (str.IndexOf(args[i]) == -1)

return false;
}

return true;
}

public static void Main(string[] args) {
bool mem_flag = false;
string targ_type = null;

// Parse command-line arguments.

int argi = 0;
while (argi < args.Length && args[argi][0] == '-') {

if (args[argi] == "-dumpmem" || args[argi] == "-m") {
mem_flag = true;

}
else if (args[argi] == "-t" || args[argi] == "-type") {

if (argi + 1 < args.Length) {
targ_type = args[argi + 1].ToLower();
argi++;

}
}
else if (args[argi] == "-h" || args[argi] == "-help") {

dohelp();
}

argi++;
}
for (int i = argi; i < args.Length; i++)

args[i] = args[i].ToLower();

// Get a list of all types found in the standard
// library.

Assembly asm = Assembly.Load("mscorlib.dll");
Type[] typelist = asm.GetTypes();

// Iterate across each type.

foreach (Type atype in typelist) {

// Check whether type matches specified
// target type.

string typestr = atype.ToString();
if (targ_type != null && typestr.ToLower() !=

targ_type)
continue;

// If asked to display all members, iterate
// across them.

if (mem_flag) {
MemberInfo[] memlist = atype.GetMembers();

EXAMINING THE C# “HELLO, WORLD” PROGRAM�

Vol. 28, No. 2 ;login:40

foreach (MemberInfo amember in memlist) {
string memstr = amember.ToString();
string s = typestr + " " + memstr;
if (filter(s, args, argi))

Console.WriteLine("{0} {1}",
typestr, memstr);

}
}

// Just display the type itself without
// members.

else {
if (filter(typestr, args, argi))

Console.WriteLine(typestr);
}

}
}

}

The source code for this program and others in this column is
available at ftp://ftp.glenmccl.com/pub/usenix/cs2.zip.

The heart of the DumpTypes program is these two lines:

Assembly asm = Assembly.Load("mscorlib.dll");
Type[] typelist = asm.GetTypes();

An assembly is a collection of files something like a shared
library or archive. These lines of code load the standard C#
assembly and extract a list of types from it, using the GetTypes
method. Given a type such as a class and it’s possible to call an
analogous method (GetMembers) to find a list of the members
(methods, fields, properties) defined within the type.

If you run this program with no command-line arguments, it
displays a list of standard types:

System.Object
System.ICloneable
System.Collections.IEnumerable
System.Collections.ICollection
System.Collections.IList
...

If you specify a given type:

$ DumpTypes -t System.String

it displays just that type. If you specify that members are to be
displayed as well, like this:

$ DumpTypes -t System.String -m

the result is a list of members for the System.String class:

System.String System.String Empty
System.String System.String ToString(System.IFormatProvider)
System.String System.TypeCode GetTypeCode()

System.String System.Object Clone()
System.String Int32 CompareTo(System.Object)
...

For example, the first line of output refers to the Empty static
field of System.String. Empty is of type System.String and
refers to an empty string (" ").

If you specify a list of matching patterns, every line of output
will be filtered against all those patterns. For example, saying:

$ DumpTypes -m

provides a voluminous list of all types and members, a total of
more than 20,000 lines of output. But if you say:

$ DumpTypes -m cos

the output is:

System.Math Double Acos(Double)
System.Math Double Cos(Double)
System.Math Double Cosh(Double)

which describes three trigonometric methods in the
System.Math class.

We’ve looked at some of the basics around writing C# pro-
grams. C# is typically pitched as a language for developing GUI
and network applications, but you can also write stand-alone
utility programs just as you would in C programming.

ftp://ftp.glenmccl.com/pub/usenix/cs2.zip

