
THE MAGAZINE OF USENIX & SAGE
October 2002 volume 27 • number 5

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

Turoff: Practical Perl

23October 2002 ;login:

practical perl

PRACTICAL PERL ●

●

PR

O
G

RA
M

M
IN

G

Lightweight Databases
Many programs need to store some kind of state infor-

mation between sessions. What’s the best way to main-

tain this data? It depends on the application, of course.

This month, I investigate solutions that are easy to use

and that fit somewhere in between text files and rela-

tional database servers.

Managing Persistent Data
A few months ago, I started writing a program to monitor the
online catalogs of several technical publishers periodically.
Every time my program would visit a Web site, it would look for
recently added book titles. Some of these publishers maintain
extensive online catalogs, and as a good Web citizen, I certainly
don’t want to overload their servers with requests for informa-
tion my program has already seen. Furthermore, I wanted to
highlight new titles to see what I might be interested in reading.

Obviously, my program would need to store some state on disk
describing what links had been seen before. However, there are
literally dozens of ways to accomplish this, and it’s not entirely
obvious which one is best.

The lazy programmer’s solution would be to write out some flat
text files on exit that would be read in the next time my pro-
gram runs. In this case, flat files would be adequate, if the saved
data were relatively simple, such as a list of links stored one per
line. However, if I need to save more data (ISBN, title, author,
etc.), then other issues arise. For example, I would need to syn-
chronize the functions to read and write to my datafile, to make
sure they use the exact same format for both input and output.
This might become a little tricky if I need to upgrade my pro-
gram to store even more information later on.

Another perfectly valid approach is to start out using a rela-
tional database engine, such as MySQL, PostgreSQL, or Oracle.
This is generally a good choice, except in this situation, using a

relational database server seemed like an overengineered solu-
tion. I didn’t want to get bogged down with details of setting up
databases, users, or passwords – I just wanted to write a simple
Web crawler and save some data once my program finished.
One issue I particularly wanted to avoid was having a program
that magically breaks whenever a database server is moved, or
when a database user or password changes.

In the end, I found that this simple little program fit into a
sweet spot – somewhere between quick-and-dirty flat text files
and full relational database servers. Many little programs I’ve
written (most of them just quick hacks) fall into this category.
One benefit of using Perl is that I’m not stuck using an inappro-
priate technology for my problem, whether that technology is
overengineered or underengineered.

Of course, in Perl there is more than one way to solve this prob-
lem. In this article I want to examine two main types of solu-
tions: the venerable DBM file, and lightweight relational
databases.

Persistence Through DBM Files
The classic solution to this data storage problem is the venera-
ble DBM file. DBM files come in many different forms, and all
of them can be used to store simple key/value pairs. In this way,
DBM files behave much like Perl hash variables, except that the
keys and values can be saved and restored for later use.

Using a DBM file is quite simple and requires only a few lines of
code to start:

#!/usr/bin/perl -w

use AnyDBM_File;
use Fcntl;

my %urls;

tie %urls, "AnyDBM_File", "url_data", O_RDWR | O_CREAT, 0640;

... %urls is transparently connected to the file "url_data.db" ...

First, we need to load a DBM library. In this case, I loaded the
AnyDBM_File library through the use statement on line 3. I
then create a new hash variable, %urls, on line 6, and connect
that hash to the DBM file url_data.db with the tie statement on
line 8. (The default DBM file implementation on my machine
adds the .db suffix automatically.) From this point forward, any
keys or values that are added or modified to the %urls hash in
my program will also be stored on disk in the file url_data.db.
The connection will be broken either when my program fin-
ishes or when I execute the statement untie %urls;.

All of the magic occurs in the tie statement. This tells Perl to
associate the variable %urls with the package AnyDBM_File.

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long- time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

Vol. 27, No. 5 ;login:24

The other parameters are sent to AnyDBM_File to describe the
file we wish to use. Here, the parameters are a portion of the
filename we’ll be using (url_data), the flags used to open the file
(O_RDWR | O_CREAT, values that come from the Fcntl mod-
ule), and the permissions mode (0640, or read/write for the
owner, read only for the group).

For my program to monitor online publisher catalogs, I could
add a new key to this hash for each URL I process, with the
value being the day it was processed. By checking to see if an
entry already exists for a particular URL, I can easily identify
which URLs are new:

foreach (@links) {
next if defined $urls{$_}; ## We've seen this URL before

print "New URL: $_\n";
$urls{$_} = localtime();

}

And that’s it. The first time I run my little link checker, I’ll see a
whole slew of URLs fly by. Starting with the second time I run
my program, I’ll only see the URLs that have been added since
the previous run.

Flavors of DBM Files
Using the AnyDBM_File module is guaranteed to work when-
ever a new DBM file is created, but it does have some problems.
Depending on the configuration of your system, Perl will sup-
port some of the various implementations of DBM files, includ-
ing NDBM, Berkeley DB, GDBM, and SDBM. By using
AnyDBM, you tell Perl that you don’t care which one to use, any
one of them is fine. The main problem with AnyDBM is that it
is not guaranteed to use the same implementation on two dif-
ferent machines, nor is it guaranteed to open any random DBM
file you happen to have. It is quite possible that AnyDBM_File
will load the NDBM_File module when you want to open a file
created by DB_File or GDBM_File. This operation will fail
because the naming conventions or the file formats differ.

Therefore, it is better to choose a specific type of DBM file
module instead of the AnyDBM_File:

■ NDBM_File uses the native NDBM library on your system,
if one exists.

■ DB_File uses the Berkeley DB 1.85 library, if present.
■ GDBM_File uses the GNU GDBM library, if present.
■ SDBM_File is Perl’s own DBM library and is always avail-

able.
Each of these DBM libraries has its own advantages and disad-
vantages; see the documentation for AnyDBM_File for more
information (man AnyDBM_File or perldoc AnyDBM_File). I
use either DB_File or GDBM_File, because they tend to be avail-

able on most Perl installations. SDBM_File will always work,
and it exists as a DBM implementation of last resort.

Remember that DBM files store simple key/value pairs. If you
are programming multi-level data structures, such as a hash of
hashes or a hash of lists, then regular DBM files will not store all
of your data properly. For these kinds of data structures, look
into Joshua Chamas’ “multi-level DBM” module, MLDBM,
available on the Comprehensive Perl Archive Network (CPAN).

Limits to DBM Files
Perl’s support for DBM files makes it easy to add persistent data
structures to a program with just a few lines of code. The main
disadvantage is that you need to manage all of the data yourself,
using Perl hashes. This may be a useful technique in the small,
but tends not to scale very well as requirements grow.

Suppose I wanted to create a report program to count URLs,
grouped by the day they were first encountered. Using DBM
files, that code might look something like this program:

#!/usr/bin/perl -w

use strict;

use DB_File;
use Fcntl;

Load in the cache of URL => date values
my %url_dates;
tie %url_dates, “DB_File”, “url_dates”, O_RDWR | O_CREAT, 0640;

Count books (hash entries), grouped by the day they were found
my %count_by_day;
foreach (values %url_dates) {

Strip out the time component of the date
"Sun Aug 11 13:18:59 2002" -> "Sun Aug 11 2002"
my $date = $_;
$date =~ s/\d{2}:\d{2}:\d{2} //;

$count_by_day{$date}++;
}

Print out the results (unsorted)
my ($date, $count);
while (($date, $count) = each %count_by_day) {

print "$date:$count\n";
}

This small program re-uses the existing DBM file created by my
Web-crawling program that finds new links. Note that this “lit-
tle” program is 28 lines long (with whitespace and comments).
More interesting reports, like one that counts books that con-
tain the word “Perl” in the title, would require more data and
might actually be significantly more involved. Now, imagine
that two, three, or more of these reports become useful. All of a
sudden, the quick-and-dirty solution is starting to run out of

25October 2002 ;login:

●

PR

O
G

RA
M

M
IN

Gsteam, since each new report might require a few dozen lines of
new code.

It’s clear that DBM files, while useful in some circumstances,
aren’t always the best or the simplest solution available.

Lightweight Relational Databases
As the requirements for my quick little book-catalog program
slowly grow, it’s clear that a SQL database is the most appropri-
ate solution, especially if I intend to perform multiple queries
on this data. Remember that the problems I intentionally want
to avoid are some of the administrative details of setting up
databases and passwords with a database engine like MySQL or
PostgreSQL. That is, I want my program to “just work,” and not
be impacted if I happen to move my MySQL server to another
computer, convert to PostgreSQL, or change a username or
password. Additionally, I want my program to “just work” if I
move it to another computer, without requiring that a particu-
lar database engine be installed to run this little hack.

Again, we’re using Perl, so there’s more than one way to do it.

Two ready-to-use modules are available on CPAN that meet my
requirements. The first is Jeff Zucker’s DBD::CSV module, and
the second is Matt Sergeant’s DBD::SQLite module. Both of
these are database drivers that work with Perl’s DBI module,
Perl’s generic interface to many different database engines.
DBD::CSV simulates a relational database by using text files
with comma-separated values for each table in the database.
DBD::SQLite contains a full-fledged relational database engine
written in C that’s embedded in the database driver module
itself. Neither of these modules require setup, configuration, or
a server process to manage the database. They just work.

If you’re already familiar with using DBI to connect to MySQL
or other relational databases, there is nothing new to learn here.
Furthermore, should you need to upgrade from a CSV or a
SQLite database, all you need to do is change the DBI connec-
tion string, and possibly some of your SQL statements – the rest
of your Perl programs remain unchanged.

I used to recommend and use DBD::CSV when I wanted to cre-
ate a lightweight relational database. Once Matt released his
DBD::SQLite module, I started using that instead, since it con-
tains a more robust database engine. This is mostly due to the
hard work of Richard Hipp, who created SQLite as a full-fea-
tured, embeddable relational database, complete with indexes,
transactions, and multiuser access.

Creating a Perl program that uses SQLite is straightforward,
assuming you’re already familiar with DBI and SQL (another
issue entirely):

#!/usr/bin/perl -w

use strict;
use DBI;

my $dbname = "url_dates.db";
my $dbh = DBI->connect("dbi:SQLite:dbname=$dbname");

... use this SQLite database just like any other DBI database ...

One interesting feature of SQLite is that its columns are gener-
ally typeless. The column types that are declared in a CREATE
TABLE statement are ignored (with the exception of integer pri-
mary keys), so there is no need to worry about losing data when
storing a 30-character string in a column declared to be of type
CHAR(25), or getting an error when storing a string value in an
INTEGER column.

Using a relational database makes reporting much easier. For
example, a program to count all URLs in the database, grouped
by date, would be much simpler than the DBM version seen
above:

#!/usr/bin/perl -w

use strict;
use DBI;

my $dbh = DBI->connect("dbi:SQLite:dbname=url_dates.db");

my $stmt = $dbh->prepare("SELECT day, COUNT(day)
FROM urls GROUP BY day");

$stmt->execute();
while (my @row = $stmt->fetchrow_array()) {

print join(": ", @row), "\n";
}

This program is half the size of my previous report program,
and all of the logic for this report is contained in the SQL state-
ment on line 4. The while loop at the bottom is reasonably
generic and can be abstracted out into a separate sub. It would
also be relatively easy to add another SQL query to count the
number of books that contain “Perl” in the title – something
that would have required more than one extra line of code in
the DBM version of the program.

Conclusion
Maintaining persistent data is a common task in Perl programs,
and there are easily dozens of ways to do it. For the truly simple
tasks, Perl makes simple DBM files available easily and trans-
parently. For more complicated tasks, the easiest solution tends
to involve using the DBI, along with a suitable database engine,
whether that’s something big and powerful, or something small
and easy to set up.

PRACTICAL PERL ●

