
THE MAGAZINE OF USENIX & SAGE
June 2002 volume 27 • number 3

inside:
PROGRAMMING

NEW I/O FEATURES IN C9X

by Glen McCluskey

The Advanced Computing Systems Association &

The System Administrators Guild

&

31June 2002 ;login:

●

PR

O
G

RA
M

M
IN

GWe’ve been presenting some of the new features in C9X, the standards

update to C. In this column we’ll discuss I/O features added to the library.

We’ll start by looking at printf specifiers, and then go on to consider several

new I/O functions.

Printf and New Types
C9X adds four types to C: _Bool, wchar_t, long long, and _Complex. How do you
print values of these types? _Bool has no printf specifier, and so to print a value of the
type, you need to say:

#include <stdio.h>
#include <stdbool.h>

int main()
{

_Bool b = true;

printf("%s\n", b == true ? "true" : "false");
}

Alternatively, you can treat a _Bool as an integer, with values 0/1.

The wide character type, wchar_t, is output using the printf %lc specifier or functions
like fputwc. Here’s an example:

#include <stdio.h>
#include <wchar.h>

int main()
{

wchar_t c1 = L'\u1234';

FILE* fp = fopen("test", "wb");
fprintf(fp, "%lc", c1);
fclose(fp);

fp = fopen("test", "rb");
wchar_t c2 = fgetwc(fp);
fclose(fp);

if (c1 != c2)
printf("c1 != c2\n");

fp = fopen("test", "rb");
int c;
while ((c = getc(fp)) != EOF)

printf("%x ", c);
printf("\n");
fclose(fp);

}

Wide characters have an encoding, used to convert them to or from a sequence of
bytes. For example, the wide character L'\u1234' is encoded as the three bytes:

e1 88 b4

The long long type is formatted using the %lld specifier, like this:

#include <stdio.h>
#include <limits.h>

new I/O features
in C9X

NEW I/O FEATURES IN C9X ●

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

32 Vol. 27, No. 3 ;login:

int main()
{

long long x = LLONG_MIN;

printf("%lld\n", x);
}

The _Complex type has no specifier. Instead, you use the creall and cimagl functions to
extract the real and imaginary parts of the complex number. An example:

#include <stdio.h>
#include <complex.h>

int main()
{

_Complex long double c = 37.0L + 47.0L * I;

printf("%Lg + %Lg*I\n", creall(c), cimagl(c));
}

The output is:

37 + 47*I

and the %Lg specifier is used to format long doubles.

Other Printf Specifiers
Another group of printf specifiers is used to handle situations where an integral type is
expressed as a typedef, and the underlying type could be signed or unsigned int, long,
or long long; size_t is an example. The %u notation specifies an unsigned type, and the
z modifier (i.e., %zu) indicates that the type has size_t width, based on local system
settings. Here’s how you print a size_t value:

#include <stdio.h>
#include <stddef.h>

int main()
{

size_t x = ~0u;
printf("%zu\n", x);

}

A similar approach is used for the intmax_t types defined in <stdint.h> with the j mod-
ifier for %d:

#include <stdio.h>
#include <stdint.h>

int main()
{

intmax_t x = INTMAX_MAX;
printf("%jd\n", x);

}

The output on my Linux system is:

9223372036854775807

A third example is the t modifier for the ptrdiff_t type:

#include <stdio.h>
#include <stddef.h>

int main()
{

char a;
char b;
char c;
char d;
ptrdiff_t x = &d - &a;

printf("%td\n", x);
}

Here are a couple of other examples of new specifiers. %hh converts the correspon-
ding printf argument to character width, and then formats the value as an integer. For
example, the output of this program:

#include <stdio.h>

typedef unsigned char UINT8;

int main()
{

UINT8 a = 100;
UINT8 b = 200;

printf("%u\n", a + b);
printf("%hhu\n", a + b);

}

is:

300

44

In both cases, a + b has a value of 300, passed to printf as an argument. But in the sec-
ond case, the argument is converted to an unsigned character, and thus has the value
44 (300 mod 256). The %hh specifier is useful for working with short integers, for
example types like int8_t defined in <stdint.h>:

typedef signed char int8_t;

A final example uses the %a specifier to format hexadecimal floating constants:

#include <stdio.h>

int main()
{

float f = 16320;

printf("%a\n", f);
}

The output of this program is:

0xf.fp+10

In other words:

(15 + 15/16) * 2^10 = 16320

33

●

PR

O
G

RA
M

M
IN

G

June 2002 ;login: NEW I/O FEATURES IN C9X ●

Scanf Specifiers
Many of the same specifiers used in printf are available in scanf. For example, this pro-
gram is the inverse of the one just above:

#include <stdio.h>

int main()
{

double d;

sscanf("0xf.fp+10", "%la", &d);

printf("%g\n", d);
}

The output of the program is:

16320

The Snprintf Function
Snprintf is a function much like sprintf, but with the ability to specify a maximum
buffer width. Here’s an example of snprintf:

#include <stdio.h>

void f()
{

char buf[8];

//sprintf(buf, "testing %d", 1234);
//printf("%s\n", buf);

snprintf(buf, sizeof buf, "testing %d", 1234);
printf("%s\n", buf);

}
int main()
{

f();
}

When I run this program with the sprintf call uncommented, the result is a segmenta-
tion violation, due to buffer overflow. snprintf avoids this problem by allowing you to
specify the buffer width.

This particular problem is a major source of security holes: for example, manipulating
the amount of buffer overflow such that a stack frame gets overwritten.

Vfprintf
vfprintf, and the related functions vfscanf, vsnprintf, vsprintf, and vsscanf, allow you to
pass a variable argument list to the function. Here’s an example that defines an error-
reporting mechanism:

#include <stdio.h>
#include <stdarg.h>

void report_error(const char* file, int line, char* format, ...)
{

va_list args;

34 Vol. 27, No. 3 ;login:

va_start(args, format);

fprintf(stderr, "Error at file %s, line %d: ", file, line);

vfprintf(stderr, format, args);

va_end(args);
}
int main()
{

int x = 37;
int y = 47;

if (x < y) {
report_error(__FILE__, __LINE__,

"x < y (x=%d y=%d)\n", x, y);
}

}

In this example, I have a report_error function, and I want to pass it a file and line, and
also a printf format and a variable number of arguments to be used with the format.
Inside report_error, I can set up a variable argument list, and further pass it to the
vfprintf function.

The result of running this program is:

Error at file vf1.c, line 23: x < y (x=37 y=47)

The features we’ve described above are all useful in writing more portable and secure
programs, and in working with new C9X types.

35

●

PR

O
G

RA
M

M
IN

G

June 2002 ;login: NEW I/O FEATURES IN C9X ●

