
THE MAGAZINE OF USENIX & SAGE
November 2001 • Volume 26 • Number 7

inside:
INTRUSION DETECTION

Survivability with a Twist

by Sven Dietrich

The Advanced Computing Systems Association &

The System Administrators Guild

&

Special Focus
Issue: Security
Guest Editor: Rik Farrow

64

Glancing at the hexadecimal pattern on the screen, I was quite happy with

my intrusion detection system: I had netted some Ramen worm exploit

code and handed it over to the appropriate incident response team. It had

caught itself in one of the flytraps that was listening on the border network.

This was quite surprising in light of the stumbling blocks I had encountered

in the preceding few weeks.

The Mission
This catch should not have been that surprising. During the 18 months preceding
this incident I had built up a network analysis and intrusion detection system (IDS)
geared toward dealing with distributed denial of service (DDoS) attacks.1 One of the
difficulties I had encountered during this time was maintaining the set of systems to
the point of self-sufficiency and self-repair, within reason at least, under common
attack scenarios.

One of the fears of a security expert is the loss or absence of network forensics. “Net-
work traces? Sorry, the network analysis systems are down/not available/not up yet.”
Network forensics provide clues to a security expert in the same way a detective would
use clues to solve a mystery or a crime. Typical examples are packet flows collected at
the router level, TCP-wrapper2 logs at the host level, and intrusion detection system
logs. Frequently, an intruder will try to disable monitoring systems prior to launching
the real attack so that it cannot be reconstructed. The mission is to be able to recon-
struct the incident, if not fully, at least partially.

Departure from Basic Security Concepts
The computer security field assumes a binary model, where a system either resists the
attack or is compromised. Many years of research have gone into the effort of building
higher and higher walls that the intruders cannot overcome. This inevitably leads to an
arms race with the attackers, as they attempt to undermine, breach, or otherwise trans-
gress those walls.

Rather than try to compete in this game, the field of survivability takes a different spin.
The concept of survivability, as currently defined, is the ability of a system to fulfill its
mission in the presence of attacks, failures, and accidents.3 In the survivability world-
view, one accepts the compromise or failure of one or more components of the system,
as long as the mission can be completed, even if a reduced or degraded mode is neces-
sary. The field explores various techniques for building survivable systems, including
techniques borrowed from dependability and fault-tolerance, among others. For more
philosophical foundations on the definition of the term, please refer to the references.4

Motivation
As I had investigated some initial incidents, I was often faced with the frequent absence
of evidence. I wanted to be able to analyze most aspects of the attack, whether it was
denial of service or not. Therefore, I needed a system that could operate, even partially,
in the presence of a DDoS attack to gather as much information on the attack as possi-
ble. Even the local legitimate “security scans” that would periodically check for
unpatched and insecure systems could rattle the hosts quite a bit.

The Approach
Since my budget was small, my choices were somewhat limited. I decided to take baby
steps and proceed empirically. Based on my first setup (a sensor piping data back to a

survivability
with a twist

Vol. 26, No. 7 ;login:

by Sven Dietrich

Sven Dietrich is a
member of the tech-
nical staff at the
Carnegie Mellon
Software Engineering
Institute in Pitts-
burgh, PA. When he
does not snort pack-
ets, he conducts
research in computer
security and surviv-
able network tech-
nology.

spock@cert.org

data collection host over a secure shell connection), I identified operating systems and
hosts stable enough for my purpose. However, I could not stop there. That summer
was very hot and the local power company kept implementing rolling brownouts and
blackouts. I wanted to look at all the components of this little system: what hosts
would come back up and how would they recover after the “uninterruptible” power
system lost power?

How robust was my setup really? I had found several uninterruptible power systems
and distributed them among the hosts. As the system lived in a set of racks, colleagues
would repeatedly trip over power and network cables as they were trying to access
their own prototype systems. Of course this kept me on my toes. I had managed to
build a set of redundant systems – replication of services, excellent! A geographic dis-
persion of the systems and their associated data files followed to minimize the impact
of a local failure. My next step was to create a heterogeneous environment, so that one
potential attack would not necessarily affect all of the systems involved, which was
achieved by selecting a slightly different operating system for each host. (For those die-
hard operating system aficionados who must know, the two operating systems were
OpenBSD and NetBSD.)

Slicing the Network Stream
Since a complete loss of disks, systems, or other components could not be excluded
from consideration, I wanted to record the data in several ways, so as to “rebuild”
events later. It was absolutely critical that I be able to return to any given point in the
data sets so I could perform the aforementioned network forensics. Gathering packet
headers using argus,5 full-packet recording using tcpdump,6 keyword detection across
protocols and ports using ngrep,7 and signature detection and anomaly detection
using Snort8 were some methods for the slicing. Effectively, one performs several types
of data reduction while one drinks from the fire hose that is the network stream.

Some types of attack, such as a buffer overflow in tcpdump, could disable, compro-
mise, or blind intrusion detection systems. These so-called in-band attacks would
travel in the data stream that one is recording and would act on a listening tool itself
or affect a susceptible operating system, causing it to hang or crash. By varying the way
one looked at the data, the chances that at least a few monitoring tools would remain
orthogonal to the problem were relatively high. Even that was not sufficient; I wanted
to reconfigure my system in the event of loss, corruption, or compromise of one of my
components.

The Interconnection Network
In order for the different hosts to exchange status information, network stream data
and logs, I built a redundant interconnection network, opaque to the outside observer.
By performing queries, from the simple pinging of a host to a more complex one such
as interrogating via a series of TCP/IP client-server messages whether a particular ser-
vice was still running, the other hosts were given a view of the system as a whole. In
the event of a non-response, the remainder of the system could then reconfigure by
firing up appropriate replacement processes, such as a new packet logger or signature
detector, without impacting the current role of the host. Each host had a primary role
assigned to it, with a list of secondary and tertiary roles that would be assumed in case
of the loss of a primary-role host. Several strategies were conceivable. One very sim-
plistic one, noticing that a primary-role host had vanished and taking the role of that
host if the local host was capable of doing so, seemed to work well enough. Another

65November 2001 ;login:

These so-called in-band

attacks would travel in the

data stream that one is

recording and would act on a

listening tool itself . . .

SURVIVABILITY WITH A TWIST ●

●

IN

TR
U

SI
O

N
D

ET
EC

TI
O

N
| F

O
RE

N
SI

C
S

Vol. 26, No. 7 ;login:

one, pushing out the newly learned information to the remaining known hosts, led to
a collaborative decision.

Network time information, a source of accurate time which is important both for cor-
relating events across the globe and coordinating between hosts, relied on two separate
sources: a radio clock receiving the official time signal and a GPS-based clock, both on
local networks. These timings were crucial for the analysis of the collected exploit and
attack data. More details describing this system can be found in an upcoming paper.9

The Twist
Sitting in deep thought in front of my monitor, I recalled my first day back after my
vacation. Two of my components, computationally powerful yet non-critical as they
were, had for unexplained reasons been disconnected from both the interconnection
and the border networks. I had discounted it as a mistake I had made since I had put
the system into survivable mode before going on my vacation. Actually, it turned out
to be a confirmation of the security credo that insider threats account for a significant
number of the problems. As the non-critical components were removed from the sys-
tem, the monitoring system proceeded to reconfigure itself in order to compensate for
that loss and make the mission survive.

What I had designed to work against the outsider threat ended up working against an
insider threat, intentional or not, and it was put to the test in a perfect setting: I had
gathered sufficient network data to understand the Ramen incident and suggest miti-
gation measures.

The mission had succeeded.

REFERENCES
1. Sven Dietrich, “Scalpel, Gauze, and Decom-
pilers: Dissecting Denial of Service (DDoS),”
;login: (November 2000), theme issue on secu-
rity.

2. Wietse Venema, “TCP Wrapper – Network
Monitoring, Access Control, and Booby Traps.”
3rd USENIX Security Symposium, Baltimore,
MD (September 1992),
http://www.porcupine.org/.

3. R.J. Ellison, David Fisher, Rick Linger,
Howard Lipson, Tom Longstaff, Nancy Mead,
“Survivable Network Systems: An Emerging
Discipline,” Software Engineering Institute
Technical Report No. CMU/SEI-97-TR-013
(November 1997).

4. CERT Survivability Research page,
http://www.cert.org/research/; John C. Knight,
Matthew C. Elder, “Fault Tolerant Distributed
Information Systems,” International Sympo-
sium on Software Reliability Engineering, Hong
Kong (November 2001); Jonathan Millen,
“Local Reconfiguration Policies,” IEEE Sympo-
sium on Security and Privacy, Oakland, CA
(May 1999).

5. argus: ftp://ftp.andrew.cmu.edu/pub/argus/.

6. tcpdump: http://www.tcpdump.org/.

7. ngrep: http://sourceforge.net/projects/ngrep/.

8. Marty Roesch, “Snort – Lightweight Intru-
sion Detection for Networks,” USENIX LISA
XIII (December 1999), http://www.snort.org/.

9. Sven Dietrich, “AMPLIFIDS – A Survivable
Ensemble,” in preparation.

66

http://www.porcupine.org/
http://www.cert.org/research/
ftp://ftp.andrew.cmu.edu/pub/argus/
http://www.tcpdump.org/
http://sourceforge.net/projects/ngrep/
http://www.snort.org/

