
THE MAGAZINE OF USENIX & SAGE
April 2001 • volume 26 • number 2

{

#
inside:
OPEN SOURCE
A Logging and Tracing Facility for an

Embedded Source Code UNIX Product

The Advanced Computing Systems Association &

The System Administrators Guild

&

37April 2001 ;login: SOURCE CODE UNIX ●

by Bob Gray
Bob Gray is co-
founder of Boulder
Labs, a digital video
company. Designing
architectures for
performance has
been his focus ever
since he built an
image processor sys-
tem on UNIX in the
late 1970s. He has a
Ph.D. in computer
science from the Uni-
versity of Colorado.

<bob@cs.colorado.edu>

a logging and
tracing facility for an
embedded source
code UNIX product

●

O

PE
N

SO
U

RC
E

|
C

O
M

PU
TI

N
G

I find myself designing yet another real-time, priority-based, multi-tasking

system to use in a manufacturing plant. We are leveraging general purpose

PC hardware and Source Code UNIX to control valves, relays, and motors

and to monitor feedback with optical sensors and analog-to-digital convert-

ers. I’ve come to rely on a handful of tried-and-true methodologies for

designing and building complicated systems.

This month I want to describe a debugging and tracing facility for multi-processing sys-
tems that I first used with PDP-11s in the late 1970s. The refined, current version, which
runs under FreeBSD, is available from <http://www.boulderlabs.com>. The code should
be trivial to port to any machine with a GNU C compiler and Sys V type shared mem-
ory. But regardless of your particular environment, the concepts are applicable to any
real-time, multi-tasking system.

In an earlier article, I described the advantages of using a Source Code UNIX for
embedded products. See my April 1999 article, (;login: vol. 24, No. 2) “Embedding
Source Code UNIX in the Product” (<http://www.boulderlabs.com/6.embedding>). In
this article, and successor articles, I’ll share a number of design and coding methodolo-
gies that I have found successful.

A multi-tasking system often has complicated behavior. Various processes react to out-
side stimuli and internal interprocess communication. Tracing the system’s activity is
difficult when everything is working, and even harder during the development cycle
when components aren’t fully functional. The software described in this article is
designed to track what is happening when the system is running, both during develop-
ment and during product deployment.

The basic concept is that we wish to have control over the amount of logging data gen-
erated and present that information to the user in chronological order. During a debug
cycle, we want to be able to increase the detail of logging in certain areas and decrease
the detail in other areas.

The goals of the logging and tracing system are:

1. Low overhead so as to not skew what is being measured.
2. Easy visualization of what each process is doing and when.
3. A mechanism that not only allows the developers to control the amount of log-

ging, but also to choose which messages get logged.
4. A mechanism that tracks the last N events without the need to flush data to disk.

Let’s look at some sample output.

A B C : D E F G
21:55:34.0258 C 177:1 chef_con.c 480: This is the Chef version: 1.1
21:55:34.0272 C 0:2 chef_con.c 482: chef_control running as CHEF
21:55:34.0278 F 177:1 frame.c 2537: NOW START CHILDREN
21:55:34.0280 F 177:1 frame.c 1894: before SendMsg: chData->numChildren=4
21:55:34.0285 M 177:1 motor.c 496: Motor is alive waiting for event

http://www.boulderlabs.com
http://www.boulderlabs.com/6.embedding

38 Vol. 26, No. 2 ;login:

Column A is a high-resolution timestamp. You’ll always see logging lines
in chronological order. Column B is a symbol indicator of which process logged the
message. Columns C and D are orthogonal parameters that control which messages
appear in the log buffer. Details are given later. Columns E and F are the file name and
source code line number. Column G is the string of the log message.

To satisfy goal number 1, we want a very low overhead logging/tracing mechanism. Ide-
ally, there would be zero I/O and zero system calls. I’m willing to tolerate the cost of
writing a message to memory, but a disk write is too expensive.

A naïve logging mechanism would have a buffer in each process of the multi-tasking
system. This presents two problems. First, every process would have to provide an I/O
mechanism to ultimately get the log information to the user. If a process were to crash,
the logging information could easily be lost. Second, the relative sequencing of events in
multiple processes is not easily visualized if every process logs its own data. (Granted, a
post-processing step could merge the individual logs.)

Our mechanism designates one process as the parent that creates a piece of shared
memory. All other processes “attach” to the shared memory. Any process can log infor-
mation by acquiring write-access to the shared memory and copying its logging data. A
circular buffer is implemented in the shared memory. One benefit of the circular buffer
is that it keeps track of the last N events your system logged without any I/O. Like the
“black box” in an aircraft accident, the last few things before the crash are usually
enough. Optionally, you can request that the circular buffer be periodically flushed to
disk or to a terminal. The code detects when the circular buffer wraps around and gives
the user a clear indication that old data has been overwritten.

The logging software is leveraged from the BSD kernel circular buffer. If you look at
/usr/include/sys/msgbuf.h on a FreeBSD system, you will see the code’s heritage. I
changed that base code to work in user-land instead of kernel space, and I added shared
memory constructs to support the multiple process debugging. Shared memory is the
interprocess communication mechanism of choice when you’re striving for minimal
time impact of communicating. I first used several of the techniques mentioned in this
article when I programmed a message-passing system under DEC’s RSX11M operating
system in 1977. Several years later, shared memory made it into mainstream UNIX with
Sys V (shmat, shmctl) and 4.2BSD (mmap).

Here is the essence of the logging:

circWrite(const char *p, int n) {

lockResource(&mbp->msg_lock, &mbp->msg_busycnt);
for(i=0; i<n; i++){

mbp->msg_bufc[mbp->msg_bufx++] = *p++;
...

}
freeResource(&mbp->msg_lock, &mbp->msg_busycnt);

}

To enforce exclusive access, a process must first acquire the shared memory circular
buffer by calling the lockResource function. Fortunately, most architectures (including
the x86) have a “test and set” instruction that allows the lockResource function to be
implemented without kernel assistance for an uncontested lock. My code uses the x86
cmpxchg instruction. Therefore, typically, only a few instructions are executed to gain
access. (Thanks to Ron G. Minnich for posting his fastlock code many years ago on the
Internet.)

Shared memory is the

interprocess communication

mechanism of choice when

you’re striving for minimal

time impact of

communicating

Then, a tight loop copies a preformatted message into the circular buffer at memory
writing speed. The freeResource routine is also fast. All of the code to log a message
requires less than a microsecond on today’s hardware. (One hundred instructions on a
100MIPS machine take 1 microsecond.) The chances of two processes needing to log at
the same time are very low. For the contested access to the shared memory, we require
the overhead of a system call which causes the process to context switch.

Over the years, I’ve learned that you want to build diagnostic tracing into your code
from the start – it’s harder to add it later. While a debugger, such as GDB, is invaluable
in the development process, you also need logging and tracing in software products.

Many years ago, I found Eric Allman’s sendmail trace facility (see contrib/sendmail/
src/trace.c). At runtime, it allows the user to turn on various debugging facilities at vari-
ous priority levels. As a programmer, you sprinkle logging messages throughout your
code, each message at a particular priority with a particular integer that Eric calls a
“module ID.” He chooses the following conventions for priorities:

#define FATAL 0
#define WARN 1
#define DIAG2 2
#define DIAG3 3
...

Module IDs are orthogonal to priorities. Each log message has both a priority and a
module ID. At runtime, you can control which messages get logged by setting a priority
level for each module ID. Once this vector has been initialized, at runtime, a message is
logged if, for its module ID, the specified priority is lower than that of the correspon-
ding vector entry.

It’s time for an example. Assume that by a command line argument, I set the module ID
vector as follows:

modID Priority
0 2
1 2
2 2
3 2
4 2
5 3
6 1

And assume, sprinkled through my code, I have the following lines:

LOG(DIAG2, 3, 'M', "Got START from MOTOR");
LOG(DIAG3, 4, 'F', "Call to handle_TCP_read');
LOG(WARN, 5, 'G', "Command too long (%d)\n", length);

LOG is a macro with the following definition:

#define LOG(pri, mId, mod_name, fmt, args...) \
{ \
if (mId>=0 && mId<TVLEN && tTdvect[mId] >= pri) \
{ \
Log (pri, mod_name, mId, __FILE__, __LINE__, fmt , ## args);\} \
}

You can see that we will “Log” the message “Got START from MOTOR” because tTd-
vect[mId] >= pri. Note also the third argument, ‘M’. It’s a symbol for the motor control

39April 2001 ;login:

Over the years, I’ve learned

that you want to build

diagnostic tracing into your

code from the start – it’s

harder to add it later.

SOURCE CODE UNIX ●

●

O

PE
N

SO
U

RC
E

|
C

O
M

PU
TI

N
G

process. “Call to handle_TCP_read” will not be logged because tTdvect[4] < DIAG3.
“Command too long (%d)\n” from the ‘G’ process will be logged because tTdvect[5] >=
WARN.

The Log function formats the message and has the basic form:

Log (int pri, int mod_name, int modId, char *file, int line, char *fmt, ...)
{

gettimeofday(......); /* get system time stamp */

n = snprintf (mbuf,LOGBUFSIZE,
"%02d:%02d:%02d.%04ld %c%3d:%1d %-10.10s %4d: %s%s%s\n",
t->tm_hour, t->tm_min, t->tm_sec, timeStamp.tv_usec / 100,
mod_name, modId, pri, file, line, buf, errStr ? ": " : "",
errStr ? errStr : "");

circWrite(mbuf,n);
}

We made the decision to pay for one system call, gettimeofday, that gets an accurate
time-stamp. The argument, module, is a letter that gives a symbolic identity to the
process that logged to shared memory. For example, ‘M’ represents the motor control
process. File and line are obtained from the C pre-processor using the __FILE__,
__LINE__ directives. The variable number of arguments following the fmt string is han-
dled with the va_list, va_start, vsnprintf mechanism.

The logging vector is initialized to priority 2 for all entries. That is, as code is executed,
lines with a priority level of FATAL, WARN, and DIAG2 will cause logging activity. From
the command line, we can override these defaults. For example, the parent process (the
one that created the shared memory) could be started with the following debugging
options which would be passed to the respective children processes, ‘G’ and ‘M’ (one is a
GUI, the other is Motor control):

-dG3:25-33 -dM4:0-

Then the ‘G’ process would be told to adjust the vector entries 25–33 to priority level 3
and the ‘M’ process would be told to adjust its vector entries from 0 through the last, to
priority 4. (Note, each process has its own tTdvect array.) Hence, logging would increase
as a result of these runtime options. The syntax is:

debug_option : '-d' [mod_name] pri ':' range
mod_name : 'C' | 'D' | 'F' | 'G' | 'M' (adjust for your system)
pri : uchar
range : uchar '-' uchar | uchar '-'

Finally, there are options to control the frequency of circular buffer flushing, if any, the
file or file descriptor it goes to, the frequency of flushing, and the size of the circular
buffer. Typically, it is the parent process that has this responsibility.

Over a couple of projects, we have found this logging and tracing facility invaluable dur-
ing the development cycle. As products are deployed, we have found that these kinds of
log files are often sufficient to diagnose a problem without any on-site visit. In the spirit
of collaborative Internet development, we hope you find this software useful.

Thanks to Dave Clements and Tom Poindexter.

40 Vol. 26, No. 2 ;login:

As products are deployed, we

have found that these kinds of

log files are often sufficient to

diagnose a problem without

any on-site visit.

