
THE MAGAZINE OF USENIX & SAGE
February 2001 • volume 26 • number 1

{

#
inside:
CLIF FLYNT:

THE TCLSH SPOT

The Advanced Computing Systems Association &

The System Administrators Guild

&

49February 2001 ;login: THE TCLSH SPOT ●

The previous Tclsh Spot article described how to use the Tcl socket command

to build a simple client-server-based system monitor to watch disk space

usage.

This article will expand on that idea to create a network activity monitor with a graphi-
cal display looking something like this:

The server in the previous article looked like this:

socket -server initializeSocket 55555

proc initializeSocket {channel addr port} {
after 1000 sendDiskInfo $channel

}

proc sendDiskInfo {channel} {
set info [exec df]
puts $channel $info
flush $channel
after 2000 sendDiskInfo $channel

}

vwait done

This simple server has a few serious shortcomings. It throws an error when a client
closes a connection, and it doesn’t do any validity checks to confirm that a client is
entitled to the information it’s getting.

The error condition occurs when the server tries to flush the data out of a socket that
was closed by the client. The simplest way to test if a channel is open is to try to send
data, and see if it fails. Which is how the server generates those ugly error messages. If
there were a way to run a command and find out if it worked without throwing an
error, this would be perfect.

The catch command evaluates a script and returns the success or failure status without
invoking the Tcl error handlers. The value that would otherwise be returned by the
script is saved in an optional second variable.

Syntax: catch script ?varName?

catch Catch an error condition and return the status and results rather
than aborting the script.

the tclsh spot
by Clif Flynt

Clif Flynt has been a
professional pro-
grammer for almost
twenty years, and a
Tcl advocate for the
past four. He consults
on Tcl/Tk and Inter-
net applications.

<clif@cflynt.com>

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

script The Tcl script to evaluate.
varName Variable to receive the results of the script.

These two lines produce equivalent results, but the second one won’t fail if x contains a
non-numeric value:

set x2 [expr $x * 2]
set fail [catch {expr $x * 2} x2]

Deal with the error
if {$fail} {puts "$x is not a number"}

One of the simplest validation checks is to confirm that the IP address a client is con-
necting from is on the list of allowed sites. Since the Tcl interpreter gives us the address
of the client as one of the arguments to our initializeSocket procedure, it’s easy to add
this style of validation to the server. We could simply search a list of allowed IP address-
es for this client address and close the channel if the search failed.

Unfortunately, while Tcl will search a list for patterns with wildcards, it won’t search a
list where some list elements have wildcards for a match to a specific string. So, if we
wanted to use lsearch to search our string, we’d have to put each allowed address into
the list. If you want to allow access to everyone on your class A subnet, this would get
ugly.

However, the string match command will let us match a wildcard pattern against a fixed
string, and we can use that to check for matches within a much smaller list.

Syntax: string match pattern string

string match Returns 1 if pattern matches string, else returns 0.
pattern The glob pattern to compare to string.
string The string to match against the pattern.

This code compares the client IP address with patterns in a list, and only allows clients
that match one of the patterns. A second set of patterns, and similar code, could check
for addresses on a “forbidden” list.

set Server(allowed) {192.168.9.* 127.0.0.1}
...
proc initializeSocket {channel addr port} {

global Server

set reject 1
foreach ip $Server(allowed) {

if {[string match $ip $addr]} {
set reject 0
break;

}
}
if {$reject} {

close $channel
return

}
...

The previous server handles one type of service. It reports disk usage. Traditionally, we
build a different server for each application, since most servers are complicated pro-
grams performing complicated tasks.

50 Vol. 26, No. 1 ;login:

51February 2001 ;login:

However, the system monitor server is pretty simpleminded. It leaves all the fancy
analysis to the clients. So, rather than run multiple servers on this already overloaded
machine, we can use a single server that listens on multiple ports and reports different
information depending on which port was accessed.

The syntax for the socket command is:

socket -server command ?options? port

The command argument is generally thought of as the name of a procedure to invoke,
but it’s actually a script to which Tcl will append the three arguments and evaluate. You
could have something as simple as the name of the procedure to evaluate, as we did in
the previous server, or an arbitrarily complex command script.

In this case, we can pass a new argument to the initializeSocket procedure and have the
initializeSocket procedure parse that value to decide which data reporting procedure to
evaluate. That value could be some flag (1 for disk, 2 for network activity), but it’s sim-
pler to let the Tcl interpreter do the parsing for us by passing the name of the proce-
dure to call to send data to the initializeSocket procedure like this:

socket -server {initializeSocket sendDiskInfo} 55555
socket -server {initializeSocket sendNetInfo} 55556

proc initializeSocket {proc channel addr port} {

Check validity.
after 1000 $proc $channel

}

The sendNetInfo procedure looks a lot like the sendDiskInfo command, except that we
collect some network statistics instead of disk usage.

On a Linux system, I can get a report of the number of bytes that have been transferred
by reading the file /proc/net/dev. On a BSD system, you can get this information with
the ifconfig command.

Here’s the sendNetInfo procedure for a Linux system:

proc sendNetInfo {channel} {
set if [open /proc/net/dev "r"]
set data [read $if]
close $if
puts $channel $data
set fail [catch {flush $channel}]

if {$fail} {
close $channel

} else {
after 2000 sendNetInfo $channel

}
}

Meanwhile, on the client end, we need to read that data.

The previous client looped on gets and hung until a line of data was available. This
works fine for a simple client, but is a rather inelegant way of dealing with I/O.

Tcl supports both the linear type of program flow that we used in that block-until-
data-is-ready model, and an event driven flow in which the interpreter waits in an
event loop until something happens.

THE TCLSH SPOT ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

The fileevent command defines a script to evaluate when data becomes available. This
guarantees that data will be available to read when the script is called, thus the applica-
tion never blocks.

Syntax: fileevent channel direction ?script?

fileevent Defines a script to evaluate when a channel readable or writable
event occurs.

channel The channel identifier returned by open or socket.
direction Defines whether the script should be evaluated when data becomes

available (readable) or when the channel can accept data (writable).
?script? If provided, this is the script to evaluate when the channel event

occurs. If this argument is not present, Tcl returns any previously
defined script for this file event.

The lines in our client to implement this look like this:

set input [socket $Client(ip) $Client(port)]
fileevent $input readable "getNetInfo $input"

Once we’ve read a line of data we need to figure out if this line has any useful informa-
tion in it. The output of /proc/net/dev includes two lines of column headers and some
trailing blank lines that have no useful information (for this procedure).

The first word of the data lines from /proc/net/dev is the name of the device, but the
second word will always be a number in the lines with data to process. The client can
check to see if the second word is really a number, and if it’s not go on to the next line.

The newer versions of Tcl have a string is command that will let you figure out if a
string contains alphabetic, numeric, control characters, etc.

For older versions, we can use the catch and expr commands to figure out if a value is
numeric.

If a value is numeric, you can multiply it. If the string has non-numeric characters in it,
the exec command will fail, and catch will return an error.

Here’s code to check that the second word in a line of data is numeric, and return
immediately if it isn’t.

if {[catch {expr [lindex $line 1] * 2}]} {return}

Once we strip out the headers and blank lines, we are still getting a lot of numeric data,
and we need to do something with it. This looks like another great application for the
BLT widgets. The set of articles about the stock robots discussed using the BLT graph
widget. This article will describe a bit about the BLT barchart widget.

You create a BLT barchart very much as you’d create a graph (or any other Tk widget).

Syntax: barchart name ?option value?

name A name for this barchart widget, using the standard Tcl window-
naming conventions.

?option value? Option and value pairs to fine-tune the appearance of the barchart.
The available options include:
-background The color for the barchart background.
-height The height of the barchart widget.
-title A title for this barchart.

52 Vol. 26, No. 1 ;login:

-width The width of the barchart widget.
-barwidth The width of each bar on the barchart.

This command will create a simple barchart, and save the widget name in an associative
array variable. Note that the BLT widget commands exist within the ::blt:: namespace.
The widgets created by these commands are created in the current namespace.

package require BLT
set Client(barChart) [::blt::barchart .bcht -width 600 -title "Network Activity"]

Like the graph widget, the barchart widget supports several options for configuring the
axes. Two that we’ll use in this application are:

-logscale boolean Set the axis to use a logarithmic scale instead of linear.
-command script Defines a script to invoke to get a value to use as a tic label.

The log scaling is particularly important with something like this network activity
monitor. If the network is approaching saturation, we’ll have a huge disparity between
the number of bytes moved in two seconds and the number of collisions that occurred,
but seeing the collision bar is what’s important. If they get close enough to the same
size that we can see the height of the collision bar on a linear scale, we’ve already lost.

Along with the graph and barchart widgets, BLT introduces a new primitive data type
to Tcl – the vector.

From the script viewpoint, a BLT vector is an array of floating point values with the
constraint that the indices must be integers within the range defined when you create
the vector.

A vector can be created with the vector command like this:

::blt::vector myvector($size)

In this case, $size is a variable that contains the number of slots to allocate in this vec-
tor.

You can think of creating a BLT vector as a float myvector[size]; declaration, if it helps.

One neat thing about vectors is that you can use a vector to hold the X or Y data for a
barchart element, and whenever a data value changes, the chart changes to reflect this
without your code needing to do a redraw. For an application like this network activity
barchart, where the height of the bars is constantly changing, this is very useful.

Barchart elements are created with the element create subcommand, just as graph ele-
ments are created. Like the graph element create command, we can supply several
options to the element create command.

Useful options in a chart like this, where there are several sets of data, are the -fore-
ground, -background, and -stipple options that let you control the color and texture of
the bars to make them easily identified.

Which brings up the question of how to decide what color to make which bar. If we
know the devices we’ll have on a system, we could define a look-up table to convert
from device name to color. However, this would mean a code rewrite when we change
or add adapters.

Another thing we can do is initialize the client with a list of colors, and whenever a new
device is seen, we create a new bar with the next color, and increment a pointer to the
next color.

53February 2001 ;login: THE TCLSH SPOT ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

set Client(count) 0
set Client(colors) {red green blue purple orange}

...
If new device name, create new bar
if {![info exists DataVector_x_${name}]} {

vector DataVector_x_${name}(5)
vector DataVector_y_${name}(5)

$Client(barChart) element create $name -label "$name" \
-foreground [lindex $Client(colors) $Client(count)] \
-xdata DataVector_x_${name} -ydata DataVector_y_${name}

incr Client(count)
}

Note that we can use the info exists command to check if a vector has been defined,
just as we’d use it to check for any other primitive Tcl data type like an array or a list.

The names used for the vectors in this code snippet look strange. The reason for this is
that I’m playing some games with the variable names to create a common set of base
identifiers for the vectors.

The vector is a linear structure, so we can’t use the usual Tcl trick of making a multidi-
mensional array with a naming convention for the index. However, we can create as
many uniquely named vectors as we need, and can embed the name of the device in the
name of the vector.

Playing games with variable names is not usually good style. Your code will be cleaner
and easier to work with if you use an associative array. It’s a bit too easy to confuse
yourself with what parts of a variable name are being substituted, and what parts are
the constant part of the name.

For example, you might write this code thinking you were creating two variables
eth0_Bytes and eth0_Errors.

set id eth0

set $id_Bytes $byteCount
set $id_Errors $errorCount

The Tcl interpreter doesn’t know that you intend to just use the characters $id as a vari-
able substitution. The syntax rules say that a variable name is terminated by special
character (usually a space). So, the Tcl interpreter throws an error that the variable
id_Bytes hasn’t been assigned.

The curly braces can be used to group a part of variable name into a single substitution
unit. Thus, we could rewrite the above example like this to make it work.

set id eth0

set ${id}_Bytes $byteCount
set ${id}_Errors $errorCount

This works, but it’s not pretty code. The better solution (when you can use the associa-
tive array) is:

set id eth0

set Bytes($id) $byteCount
set Errors($id) $errorCount

54 Vol. 26, No. 1 ;login:

Playing games with variable

names is not usually good

style.

A clever way to design this client is to have it build bar elements as they are found to be
needed, rather than starting out by building N sets of bar elements. After all, the client
doesn’t know (unless you put some hardcoded values into the code) how many devices
are on the server until it starts to analyze the data the server sends. Letting the client
configure itself to the environment makes it adaptable without the need to update
code.

The BLT barchart widget supports a configure subcommand, and like other Tk widgets
you can modify the appearance and behavior of an existing widget with this command.

Configuring the -barwidth option lets us make the bars narrower as we need more data
sets, rather than expanding the widget until it scrolls off the screen.

We can fine-tune the location of the bars by changing the bar positions in the DataVec-
tor_x_* vectors, but that means we need to know the names of the DataVector_x_* vec-
tors. We could save the names as we create the vectors, but Tcl has already saved all the
names, so why duplicate the effort?

The Tcl info command can list the variables that have been defined in a local or a glob-
al scope. You can get a list of all the variables defined, or just the variables that match a
particular glob pattern.

This is why I used the strange naming convention for the vector names, rather than
simply defining them as:

vector $name(5)

The syntax for the info globals command is:

Syntax: info globals pattern

info globals Returns a list of global variables that match the pattern.
pattern A glob pattern to attempt to match.

So, putting these pieces together and wrapping it into a procedure, we get something
like this to create a new element. Each element is the set of bars showing the number of
bytes transferred, errors, and collisions.

proc makeNewBarSet {name} {
global Client

$Client(barChart) element create $name -label "$name" \
-foreground [lindex $Client(colors) $Client(count)] \
-xdata DataVector_x_${name} -ydata DataVector_y_${name}

incr Client(count)

Make the bars 1/(n+1) wide -
this creates a one bar-width space
between the sets of data

$Client(barChart) configure -barwidth \
[expr 1.0 / ($Client(count) + 1)]

The DataVector_x_* vector holds the location
for the bars.

Tic’s are marked on integer boundaries, so start at
-.5 to get tic labels centered on the data sets

set item 0
foreach v [info globals DataVector_x_*] {

55February 2001 ;login:

Letting the client configure

itself to the environment

makes it adaptable without

the need to update code.

THE TCLSH SPOT ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

global $v
for {set i 0} {$i < [llength $Client(tics)]} {incr i} {

set ${v}($i) [expr $i + $item / ($Client(count) + 1.0) -.5]
}
incr item

}
}

Which gets us to parsing the data the server sends us. The output from /proc/net/dev is
sets of lines that look like this:

eth0: 1535 429 0 0 0 0 0 0 320353952 956185 0 0 0 108688 0 0

The first field is the name of the device, then the number of bytes received, the number
of packets received, errors received, etc. The BSD ifconfig output follows a similar pat-
tern, except that it reports the quantities since the last invocation of ifconfig, rather
than quantities since the system was booted.

We can treat each line as a list. The values we are interested in will always be at particu-
lar locations in the list. Thus, we can write some generic code to parse the list, and
drive it with a pair of lists that describe the locations of the data we want, and a label
for that data:

set Client(tics) {{rcv bytes} {xmt bytes} {rcv errs} {xmt errs} {colls}}
set Client(pos) {1 9 3 11 14}

We need to save the values from the previous server report in order to calculate the
number of bytes transferred. Which means we need to be able to find that data again
when we need it.

This is another good place to simulate a 2-dimensional array with the Tcl associative
array and a naming convention. Since we get the name of the device in position 0 of
the list, and we know the positions of the fields we are collecting, we can parse the list
with code that loops through the lists of positions and labels to collect and calculate the
data. The results of the calculation are put into the DataVector_y_* vectors to cause the
barchart to reflect the new values.

Again, we can use the Tcl info exists command to determine if a variable has had a
value assigned to it yet. If the variable has had a value assigned to it, we can calculate a
difference.

This code will grab values from the line of data, check to see if we’ve already saved one
of them, and calculate the difference if we have.

set vectorPos 0
foreach pos $Client(pos) label $Client(tics) {

set val [lindex $line $pos]
if {[info exists Client($name.$label)]} {

set DataVector_y_${name}($vectorPos) \
[expr $val - $Client($name.$label)]

incr vectorPos
}

set Client($name.$label) $val
}

}

This gives us a nice little snapshot monitor. But, as they say, those who don’t remember
history are doomed for some ugly shocks.

56 Vol. 26, No. 1 ;login:

57February 2001 ;login:

In the next Tclsh Spot article I’ll look at ways to save and present some historical data
on the network activity.

Here’s the complete code for this client/server pair. This code is also available at
<http://www.noucorp.com>.

server.tcl
socket -server {initializeSocket sendDiskInfo} 55555
socket -server {initializeSocket sendNetInfo} 55556

set Server(allowed) {192.168.9.* 127.0.0.1}

proc bgerror {args} {
global errorInfo
puts "ERROR: $args"
puts "$errorInfo"

}

proc initializeSocket {proc channel addr port} {
global Server

set reject 1
foreach ip $Server(allowed) {

if {[string match $ip $addr]} {
set reject 0

}
}
if {$reject} {

close $channel
return

}
after 1000 $proc $channel

}

proc sendDiskInfo {channel} {
set info [exec df]
puts $channel $info
set fail [catch {flush $channel} out]
if {$fail} {

close $channel
} else {

after 2000 sendDiskInfo $channel
}

}

proc sendNetInfo {channel} {
set if [open /proc/net/dev "r"]
set data [read $if]
close $if
puts $channel $data
set fail [catch {flush $channel} out

if {$fail} {
close $channel

} else {
after 2000 sendNetInfo $channel

}
}

vwait done

THE TCLSH SPOT ●

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

http://www.noucorp.com

client.tcl
package require BLT

Some defaults and constants
set Client(count) 0
set Client(colors) {red green blue purple orange}
set Client(tics) {{rcv bytes} {xmt bytes} {rcv errs} {xmt errs} {colls}}
set Client(pos) {1 9 3 11 14}

set Client(ip) 192.168.9.1
set Client(port) 55556

##
proc getNetInfo {channel}—
Retrieves a set of network information from the socket
Parses the info, and creates a set of 'diff' index arrays
that are the difference between this value and the previous
value for a field.
#
Arguments
channel The channel to read data from
#
Results
Modifies the Client array.
Invokes processData to update the bar

proc getNetInfo {channel} {
global Client

gets $channel line

The first element is the name, but the second should
be a number. If it isn't (this is a line of column headers.)
We'll skip out and wait for the next line of data.

if {[catch {expr [lindex $line 1] * 2}]} {
return

}

Long integers may run into the ":" in the line label
This gives us a space to parse on.
regsub ":" $line " " line

The first entry is the device name.
set name [lindex $line 0]

global DataVector_x_${name}
global DataVector_y_${name}
if {![info exists DataVector_x_${name}]} {

::blt::vector DataVector_x_${name}(5)
::blt::vector DataVector_y_${name}(5)

makeNewBarSet $name
}

The DataVector_y vector holds the heights of the bars
for a given data set.

set vectorPos 0
foreach pos $Client(pos) label $Client(tics) {

58 Vol. 26, No. 1 ;login:

59February 2001 ;login:

set val [lindex $line $pos]
if {[info exists Client($name.$label)]} {

set DataVector_y_${name}($vectorPos) \
[expr $val - $Client($name.$label)]

incr vectorPos
}

set Client($name.$label) $val
}
set Client(update) "Last Update: [clock format [clock seconds]\

-format %H:%M:%S]"
}

##
proc makeNewBarSet {name}—
Creates a new set of bars, and reconfigures the barchart to hold them.
#
Arguments
name The name of the data associated with this set
#
Results
Creates a new DataVector global.
Modifies the barchart and existing DataVector_x_* data.

proc makeNewBarSet {name} {
global Client
$Client(barChart) element create $name -label "$name" \

-foreground [lindex $Client(colors) $Client(count)] \
-xdata DataVector_x_${name} \
-ydata DataVector_y_${name}

incr Client(count)

Make the bars 1/(n+1) wide -
this creates a one bar-width space
between the sets of data

$Client(barChart) configure -barwidth [expr 1.0 / ($Client(count) + 1)]

The DataVector_x_* vector holds the location
for the bars.

Tic’s are marked on integer boundaries, so start at
-.5 to get tic labels centered on the data sets

set item 0
foreach v [info globals DataVector_x_*] {

global $v
for {set i 0} {$i < [llength $Client(tics)]} {incr i} {

set ${v}($i) [expr $i + $item / ($Client(count) + 1.0) -.5]
}
incr item

}
}

##
proc getTicLabel {chart tic}—
Returns a textual label for the barchart
Arguments
chart The chart associated with this request
tic The position of the tic being requested.

●
PR

O
G

RA
M

M
IN

G
| N

ET
W

O
RK

IN
G

| C
O

M
PU

TI
N

G

THE TCLSH SPOT ●

proc getTicLabel {chart tic} {
global Client
return [lindex $Client(tics) $tic]

}

Make a quit button
button .b -text "Quit" -command "exit"
grid .b -row 0 -column 0

And the update time label
label .l -textvar Client(update)
grid .l -row 0 -column 1

Build a barchart
set Client(barChart) [::blt::barchart .bcht -width 600 -title\

“Network Activity”]
$Client(barChart) axis configure x -command getTicLabel
$Client(barChart) axis configure y -logscale 1

grid $Client(barChart) -row 2 -column 0 -columnspan 3

Open a client socket on the local system
(for testing purposes.)
set input [socket $Client(ip) $Client(port)]

When data is available to be read, call getNetInfo
fileevent $input readable "getNetInfo $input"

And wait for the fireworks to start.

60 Vol. 26, No. 1 ;login:

