
“Otherworld” - giving applications a chance to survive OS kernel crashes

Alex Depoutovitch Michael Stumm
Department of Computer Science, Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
{depout,stumm}@eecg.toronto.edu

Abstract

We propose a mechanism that allows applications to sur-
vive operating system kernel crashes and continue func-
tioning with no application data loss after a system re-
boot. This mechanism introduces no run-time overhead
and can be implemented in a commodity operating sys-
tem, such as Linux. We demonstrate the feasibility of
our mechanism on two example applications: JOE text
editor and MySQL database server.

1 Introduction

An unexpected error within an operating system (OS)
kernel, also referred to as a kernel panic, typically leads
to a system reboot, which destroys all applications with-
out giving them an opportunity to take remedial actions,
such as saving data in memory to disk. In this paper,
we describe a mechanism that, with a few changes to
the applications, allows them to survive system reboots.
Specifically, the mechanism preserves application data
across kernel reboots and gives the applications the op-
portunity to save their state or, in many cases, to continue
execution under the control of the rebooted kernel.

Many techniques have been developed over the last
few decades that allow applications to handle critical
application-level errors. Examples include registration of
handler routines (e.g. SIGSEGV signal in UNIX) that are
called by the OS when the application encounters a crit-
ical error, watchdog processes that monitor the health of
the application, and dividing an application into a set of
restartable components [5]. However, in all of the above
approaches, the kernel itself remains a weak point in that
whenever it experiences an unexpected error, there is no
other software component that can reliably deal with the
error. As a result, when an OS, such as Linux or Win-
dows, encounters a critical error, it simply reboots the
system. A side effect of this is immediate termination of
all running applications and loss of all unsaved data.

A number of techniques exist that minimize the conse-
quences of a kernel crash (i.e. an error in the kernel that
leads to reboot), including periodic saving of application
state to persistent storage, propagating application state
to another system, or performing redundant calculations.
These techniques may minimize or prevent data loss, but
they also introduce significant overhead in terms of run-
time performance and/or system cost. We are unaware
of any existing technique that allows an application to
survive a critical error in the OS and continue execution,
even with limited functionality, without this type of over-
head.

The key idea behind our work is that an OS kernel is
simply a component of a larger software system, which
is logically well isolated from other components, such as
applications, and, therefore, it should be possible to re-
boot the kernel without terminating everything else run-
ning on the same system. Of course, rebooting a compo-
nent as important as the kernel will be difficult without
support from the applications, but we argue in this pa-
per that this is possible with minimal and straightforward
changes to application code.

Two properties of OS kernels complicate the process
of rebooting the kernel without affecting running appli-
cations. The first is that the kernel resides in a privileged
layer underneath all applications, so there is no other
software component that can manage kernel reinitializa-
tion without destroying all applications running on top of
this kernel. The second property is that the kernel itself
contains data critical for running applications, such as a
physical memory page maps, location of data paged to
disk, opened files, and network connections, which are
lost during kernel reinitialization.

To address these issues, we propose having two OS
kernels resident in physical memory. The first (main)
kernel performs all activities an OS is responsible for.
The second (crash) kernel is passive and activated only
when the main kernel experiences a critical error. When
the main kernel crashes (i.e. “panics”), instead of re-



booting, it passes control to the crash kernel, which is
not affected by the error because it has been passive and
may be protected by memory hardware. After passing
control to the crash kernel, all information on running
applications in the main kernel as well as the application
data still exists in memory and is accessible by the crash
kernel. This allows the crash kernel to reconstruct appli-
cation state and pass control to the application without
loosing data. We refer to this reconstruction process as a
resurrection of an application.

Being able to reboot a kernel and not destroy all run-
ning applications would allow us to achieve a higher
level of fault tolerance and increased mean time to sys-
tem failure without having to resort to expensive methods
like checkpointing or systems redundancy. In addition,
as we will show, our methodology opens new possibili-
ties for performance improvements of those applications
that traditionally have had to sacrifice performance for
reliability, such as databases. Finally, our method sup-
ports dynamic updates of OS kernel code without requir-
ing a system reboot, extending a concept of software re-
juvenation to OS kernels.

We present the details of our approach and describe
its technical aspects in the next section. In section 3,
we discuss changes required to applications in order to
support kernel reboot. Section 4 discusses the reliability
of our technique. We present related work in Section 5
and close with concluding remarks.

2 Architecture

Our proposed mechanism of rebooting a kernel while
continuing application process execution is shown in
Fig. 1. Initially a computer system boots normally by
loading and initializing the (main) OS kernel. A special
region of kernel memory is reserved (e.g., 64 MB) for
a (crash) kernel. The crash kernel image is loaded in
this region and is left there untouched and uninitialized
(Fig. 1a). In our implementation under Linux, we use the
existing KDump mechanism to load the crash kernel into
memory [10].

Any user application that wishes to be resurrected
must register with the kernel a special crash procedure,
which is located in the application address space. The
address of this procedure is stored in the process descrip-
tor of the main kernel and serves as an entry point to be
called if and when the crash kernel gains control.

Whenever the main kernel experiences a critical error,
it normally prints an error message and reboots the sys-
tem. In our case, instead of rebooting, the main kernel
passes control to the initialization point of the crash ker-
nel. The crash kernel initializes itself normally with the
only difference being that it only uses the memory region
reserved for it (Fig. 1b). In order not to corrupt any pages

Figure 1: Surviving kernel panics
a) The system functions normally. b) A critical error
occurs and control is passed to the crash kernel c) The
crash kernel starts up and retrieves process data from the
main kernel d) The crash kernel starts execution of pro-
cesses that were running when the main kernel crashed.

that were swapped out by the main kernel, we use two
swap partitions in our system: one is used by the main
kernel and the other by the crash kernel. The crash ker-
nel loads the same device drivers as the main kernel and
mounts the same file systems at the same mount points.
Our goal is to make the application environment in the
crash kernel as similar as possible to that of the main
kernel so that the same resources are available to the ap-
plications after resurrection.

After the crash kernel completes initialization, it starts
a recovery phase, in which it accesses the kernel struc-
tures of the main kernel. It reads the list of processes
and selects those that have registered a crash procedure.
For each of these processes, we call a modified fork that
takes the id of the process being resurrected and retrieves
its page tables from the main kernel memory. For each
physical memory page of the process, a new page is al-
located in the crash kernel and filled with the content
copied from the corresponding page of the main kernel.
Hence, pages that were resident in memory at the time
of the crash are copied to the memory space of the newly
created process. Further, the pages that were swapped
out to disk or were backed by a file (e.g. shared library)
are reread from the main kernel swap partition or the
corresponding backing file. This fully restores the user-
mode memory space of each target process. Finally, the
modified fork call reopens all files that were open for the
application when the crash occurred and restores their
file pointers (offset of the next file operation) (Fig. 1c).

The crash kernel then allocates a new stack and passes
control directly to the crash procedure that was regis-
tered by the process in the main kernel. From this point
on, the resurrected process continues executing with all
of its global data available as if no crash had occurred
(Fig. 1d). From the resurrected process’s point of view,

2



the crash procedure is similar to a signal handler: nor-
mal execution is interrupted and control is passed to the
crash procedure. Depending on the application architec-
ture, complexity, and robustness of the crash procedure
algorithm, the crash procedure can provide several lev-
els of recovery. In the best case, the crash procedure can
restore all kernel state that was lost during reboot (such
as locks, threads, etc.) based on information available
in the application space and then continue executing un-
der control of the new kernel. If that is not possible, the
crash procedure can simply save important process data
(e.g., client session state, unsaved user document data,
etc.) and restart the application.

There are several problems the crash procedure has to
cope with. First, our current implementation of the crash
kernel does not restore the point at which the application
flow was interrupted by the error in the main kernel. Sec-
ond, all of the kernel objects belonging to the process,
such as network sockets, threads, etc. no longer exist.
Whether they should be resurrected by the crash kernel
or the applications crash procedure depends on the target
object type.

The current implementation of the crash kernel re-
opens files that were open under the main kernel, as well
as memory mapped files. In order to simplify the file re-
opening process, the main kernel stores the full file name
and opening flags in the structure that describes the open
file. The crash kernel assigns the same file descriptors to
reopened files as they had in the main kernel and restores
file pointers from the main kernel. Thus, the fact that
files have been reopened is transparent to the resurrected
application.

In order to protect the system from critical errors in
the crash kernel, we plan in the future to allow the crash
kernel to load another crash kernel, in which case the
crash kernel starts playing the role of main kernel and
the newly loaded kernel becomes the crash kernel.

3 Evaluation

To test our mechanism, we used Linux kernel version
2.6.18 for both the main and crash kernels. We added
code to the crash kernel that retrieves information on
processes that were running at the time the main kernel
crashed and modified the fork system call so that it can
clone processes from the main kernel to the crash kernel.
These changes to the stock kernel required fewer than
1,500 lines of code. Experimentally, we were able to
successfully load the crash kernel into memory and pass
control to it when the main kernel experienced a criti-
cal error. After the crash kernel initialization completes,
we are able to list all applications that were running on
the system at the time of the crash and obtain a complete
memory dump of each application.

We evaluated our mechanism using two applications:
JOE text editor, an interactive application, and MySQL,
a database server application.

3.1 JOE editor
JOE is shipped with the Linux distribution and is an
open-source, terminal based editor capable of editing
multiple documents at the same time. It is powerful ed-
itor that supports macros and syntax highlighting. The
code base of JOE is around 30,000 lines of C code. We
found that we did not need to know the details of JOE’s
internal design or data layout in order to be able to cre-
ate a crash procedure that can restore all opened docu-
ments after a kernel crash. Each open document is de-
scribed by a structure maintained in a linked list of open
documents with a global variable pointing to the head of
the list. In addition, JOE code contains a save function
that saves a target document to a file. Our crash proce-
dure walks through the list of all open files and calls the
save function for each. Since application memory layout
and all opened files are preserved during the transition
of control from the main kernel to the crash kernel, all
of JOE’s functions continue to work unmodified, as if no
kernel crash had occurred. Because we can use unmod-
ified JOE’s functions, our crash procedure required only
25 lines of code. With the exception of making a sys-
tem call to register the crash procedure, adding the crash
procedure did not require any additional modifications to
the existing text editor code.

The JOE crash procedure we implemented is able to
operate in two modes. In the first mode, the crash proce-
dure saves to disk the contents of each file that the user
had been editing at the time of the crash so that they can
be opened later with no data loss due to the main ker-
nel crash. In the second mode, the crash procedure re-
stores the editor with exactly the same documents that
were open at the time of the crash and continues running.
No changes to the documents are lost, and the interactive
user of the system sees the same screen he had before the
crash.

3.2 MySQL database server
To evaluate our approach with a server-type application,
we experimented with MySQL, the popular open source
database. MySQL supports multiple pluggable storage
engines (SE), which are responsible for the low-level
functions that store and retrieve data. One of these, called
MEMORY SE, implements memory-resident tables. All
tables allocated by MEMORY SE are organized inter-
nally in a linked list, which is pointed to by a global
variable, and MySQL has defined functions that scan the
table and return its rows in some internal format.

3



Storing data in RAM instead of disk can significantly
improve database server performance. For example, Or-
acle found performance to improve by a factor of 3 for
sequential scans and by a factor of 140 for 4-way joins
when all data is resident in memory [14], and Ng found
memory-resident databases to perform up to 5 times
faster than disk-resident databases [16]. However, a key
reason why in-memory database design is problematic is
that critical data is lost when the OS crashes. Our mech-
anism addresses this problem by preserving the critical
data across kernel crashes.

The crash procedure that we created for the MySQL
server iterates through the list of all allocated tables, calls
the appropriate functions to retrieve data rows from these
tables, and saves them to disk. Since the row format is
not relevant for our purposes, we interpret the row con-
tents as an array of bytes. After the crash procedure
has saved all data, it simply restarts MySQL. Further-
more, we modified MySQL to (i) read during startup the
content of all MEMORY SE tables from disk that were
saved by the crash procedure, and (ii) initialize the in-
memory tables with this content. Overall, MySQL has
about 700,000 lines of code, and our modifications con-
sisted of 70 new and 5 modified lines of code.

Since in the current implementation we do not restore
network connections, a main kernel crash is not com-
pletely transparent to MySQL clients: they must reestab-
lish their connections and reissue the last database re-
quest, but the contents of the in-memory tables is pre-
served across kernel crashes.

3.3 Testing results
The Linux kernel has over 700 run-time consistency
checks, and the failure of any of them results in an OS
panic. For testing, we randomly failed some of these
checks. We tested both of the above examples in dozens
of kernel crashes. We found that our approach allowed
applications to preserve their data in every case. With
the exception of few details, like broken network con-
nections and service delays caused by the time required
to initialize the crash kernel, the kernel crashes did not
affect the end users of the applications. Since no extra
code is executed unless a crash occurs, there is no run-
time overhead.

4 Probability of successful resurrection

The practicality of our approach depends to a large extent
on the probability of the bug that caused the kernel crash
to have, directly or indirectly, corrupted kernel structures
that are needed for recovery or a having corrupted ap-
plication memory. Many errors in the OS kernel con-
form to the fail-stop model and cause an immediate crash

[1, 11, 15, 18], leaving application data intact. However,
there are some errors that do not result in an immediate
OS crash, thus leading to potential data corruption.

Previous research using both artificially created and
real bugs in MVS, Linux and FreeBSD showed that
fewer than 5-12% of all bugs corrupt data structures ma-
nipulated by components of the OS other than the one
containing the bug [1, 11, 15, 18]. Considering that most
kernel crashes are caused by third-party modules [8, 9]
and that we only use a relatively small subset of mem-
ory and process management related structures, we ex-
pect the probability of the structures important for pro-
cess resurrection becoming corrupted to be low.

Several simple, but effective, techniques can be used
to detect such corruption, should it occur. First, much
data in the kernel is already duplicated in order to speed-
up operations. By carefully analyzing data integrity, the
crash kernel can often detect corruption. Second, one
could add checksums or data duplication to the most
important data structures, like process descriptors and
memory maps. This would introduce some run-time
overhead but will guarantee that corruption will not go
undetected.

A second concern is that the kernel bug may have cor-
rupted application-level data before crashing the OS . As
was shown by Chandra and Chen, the probability of ap-
plication data corruption in this case is less than 4% [6].
It might be possible to protect application space using
memory management hardware [7]. Alternatively, the
application can add checksums or data duplication for
analyzing application data integrity. However, the per-
formance implications of such measures would need to
be carefully evaluated, but the user should be able to
choose an adequate trade-off between additional system
reliability and performance.

Another concern is that the crash may occur in the
middle of important application or OS data structures be-
ing modified so that they are in an inconsistent state. In
kernel and multi-threaded applications such data struc-
tures are usually protected by a lock. This lock is typ-
ically held by the thread modifying the data during the
period the data is inconsistent and the period is typically
kept short by design so as to minimize contention and
thus improve performance. By examining the lock state,
the crash procedure can determine if the data is poten-
tially inconsistent and proceed accordingly.

Our mechanism cannot guarantee protection from
memory corruption errors, but it should be noted that
alternative techniques also cannot not provide this guar-
antee. For example, an error in the kernel may corrupt
application data before a checkpoint is taken, corrupting
the checkpoint as well [15]. Verifying data consistency
at every checkpointing event usually results in high run-
time overhead. In contrast, the advantage of our scheme

4



is that the application is fully aware at which point it is
being resurrected and can therefore localize the effort re-
quired to check for integrity to only that point in time.
Furthermore, even if application data is not corrupted,
using checkpoints still does not guarantee successful re-
covery: the file system could be damaged by the kernel
error, causing the checkpoint file to be corrupted. Our
approach has the advantage that we already know the
crash occurred immediately previously and can take ap-
propriate precautions. For example, after the crash ker-
nel boots, it immediately checks the file system integrity
using the standard fsck utility before proceeding to appli-
cation resurrection.

5 Related Work

Other research groups have investigated ways of preserv-
ing application memory state across OS crashes and sub-
sequent reboots. Baker and Sullivan introduced the no-
tion of a fixed sized, pinned region of memory called a
Recovery Box that is accessed through a simple API and
is not destroyed during a system reboot [2]. Applications
need to be modified to periodically save critical applica-
tion state to the Recovery Box. On startup, applications
recognize that a previous instance of the application was
terminated unexpectedly (possibly due to an OS crash)
and recover the critical state from the Recovery Box.

Chen et al. proposed Rio – a reliable file write-back
cache, whose contents is preserved during a reboot and
is saved to disk after system reinitialization [7]. The au-
thors showed that it is possible to protect contents of this
cache from being corrupted by errors in the kernel by us-
ing memory protection hardware. In subsequent work,
Chen et al. suggested using similar techniques to imple-
ment transactional memory and in-memory checkpoints.
Our approach is more generic and can be applied to any
program or kernel module rather then to certain spe-
cialized applications, such as disk caches. Bohra et al.
suggest using network cards that support remote DMA
(RDMA) to implement a mechanism similar to Recov-
ery Box [4]. After an OS crash, another machine extracts
the contents of the memory region with application state
through an RDMA enabled network card.

All of the above techniques have the disadvantage of
saving only the specially designated region of physical
memory. Although they validate the concept that mem-
ory contents can survive OS crashes, they limit this mem-
ory to a specific region. This region of memory cannot be
used for any purpose other than saving application state,
so the choice of size is a trade-off between how much
physical memory is reserved for this purpose and how
much data can be saved in it by applications. Since the
entire memory space of the application cannot be saved,
the application has to regularly update the protected re-

gion of memory with the latest, most critical data. This
introduces a constant overhead estimated by Baker et al.
to be around 5% [2].

Biederman describes KExec, a solution for fast OS re-
boots, bypassing firmware and BIOS initialization [3].
He suggests loading a second kernel image into memory
while the system is running. When the system adminis-
trator wishes to reboot the system, control is passed to
the second kernel’s initialization routine. Goyal et al.
created KDump - a KExec based crash dumping mecha-
nism that saves the full contents of physical memory to
a file after a Linux system experiences a critical kernel
error [10]. The second kernel’s behavior is modified so
that it restricts itself to a small region of memory not used
by the first kernel. As a result, after the second kernel is
initialized, the memory contents of the kernel that experi-
enced the critical error is untouched and can be easily and
reliably be saved to disk by the second kernel for further
investigation. In this work, the second kernel is only used
to create a physical memory dump for further investiga-
tion - there is no attempt to recover applications. How-
ever, the authors demonstrated that it is possible to pass
control from one OS kernel to another without reinitial-
izing system memory and running firmware and BIOS
initialization procedures. They also demonstrated that it
is possible to access the data of the crashed kernel. Our
work takes this idea a step further: it restores full appli-
cation memory state and continues to run the application.

One of the most popular techniques that allow applica-
tion data to survive OS kernel crashes is checkpointing.
Full application state is saved regularly on disk in order
to survive an OS crash. One of the drawbacks of check-
pointing is its overhead, especially for applications that
use large amount of frequently changed data. Laadan
and Nieh show that checkpointing a MySql server run-
ning one session takes more than a second even on a sys-
tem with Fibre Channel hard drives [13]. Checkpointing
in-memory databases would turn them more into a reg-
ular disk-based databases with a big impact on perfor-
mance. King et al. have suggested making checkpoints
of an entire virtual machine [12]. They measured the
time overhead of the checkpoints taken every 10 seconds
to be 15-27%. In order to reduce overhead, Srinivasan
et al. suggest doing in-memory checkpoints [17]. This
reduces time overhead to several percentage points even
when checkpoints are taken several times a second. But
in-memory checkpoints have the same physical memory
overhead and restrictions as the Recovery Box approach.
In contrast, our mechanism does not produce any run-
time overhead. Moreover, in-memory checkpointing so-
lutions can make use of our mechanism to withstand OS
crashes by simply implementing a crash procedure.

5



6 Concluding Remarks

In this paper, we presented a novel approach that allows
applications to survive OS kernel crashes with only mi-
nor changes to the kernel and applications. This repre-
sents an improvement over the current state of affairs
where kernel crashes result in a system reboot with the
loss of all volatile application state. We have imple-
mented our approach using Linux, and tested it using two
applications: JOE, an interactive text editor, and MySQL
that represents a server-type application. We showed that
the required changes to the applications were minimal
and straightforward in both cases.

Our current implementation is just a first step in the di-
rection of achieving our objectives and as such has quite
a number of limitations. While our implementation is
capable of restoring application address spaces as well
as open files (including the file pointers) and memory-
mapped files, it currently does not restore: sockets, pipes,
threads, terminals, or the process’ registers, including
program counter.

In future work, we intend to add the capabilities to
restore all of the above. We expect some of these to be
straightforward. For example, because kernel crashes oc-
cur only when the processor is executing kernel code,
user-mode thread registers will have been saved in ker-
nel memory and hence can be restored by the crash ker-
nel. This should allow us to resurrect not only each pro-
cess address space, but all its threads as well to allow the
thread to continue executing from where it was executing
when the kernel crashed. On the other hand, we expect
resurrecting sockets to be significantly more challenging
with its multiple layers and more complex context.

Our current implementation does not introduce any
runtime overhead and only requires a small and fixed
amount of memory. But it does not currently check for
consistency of kernel data. We intend to add consistency
checking and, where necessary, add redundant data or
checksums to enable such checking. This will add over-
head, and we will have to evaluate its impact.

We intent to extend the capabilities of the crash ker-
nel to (i) reclaim all of physical memory after having
resurrected all targeted applications, (ii) morph itself to
take over the role of the main kernel, and then (iii) install
a new crash kernel. We also intend to allow privileged
users to trigger kernel reboots. Since booting the crash
kernel takes less than a minute, this feature can be used
for fast system rejuvenation or hot-updating of the oper-
ating system kernel.

Finally, while the results of our testing with the two
applications are encouraging, a lot more work is re-
quired. We need to experiment with many more appli-
cations and kernel crash scenarios before a final verdict
is possible.

References
[1] BAKER, M., ASAMI, S., DEPRIT, E., OUSETERHOUT, J., AND

SELTZER, M. Non-volatile memory for fast, reliable file sys-
tems. Proc. of the 5th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (1992), 10–22.

[2] BAKER, M., AND SULLIVAN, M. The Recovery Box: Using fast
recovery to provide high availability in the UNIX environment.
Proc. of the 1992 USENIX Summer Conf. (1992), 31–43.

[3] BIEDERMAN, E. Kexec. http://lwn.net/Articles/15468/.
[4] BOHRA, A., NEAMTIU, I., GALLARD, P., SULTAN, F., AND

IFTODE, L. Remote repair of operating system state using Back-
doors. Proc. of the Intl. Conf. on Autonomic Computing (2004),
256–263.

[5] CANDEA, G., AND FOX, A. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. Proc. of the 8th Workshop
on Hot Topics in Operating Systems (2001), 125–130.

[6] CHANDRA, S., AND CHEN, P. M. The impact of recovery mech-
anisms on the likelihood of saving corrupted state. Proc. of the
13th Intl. Symposium on Software Reliability Engineering (2002),
91–101.

[7] CHEN, P. M., NG, W., CHANDRA, S., AYCOCK, C., RAJA-
MANI, G., AND LOWELL, D. The RIO file cache: surviving
operating system crashes. Proc. of the 7th Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Sys-
tems (1996), 74–83.

[8] CHOU, A., YANG, J., B., C., HALLEM, S., AND ENGLER, D.
An empirical study of operating system errors. Proc. of the 18th
Symposium on Operating Systems Principles (2001), 73–88.

[9] GANAPATHI, A., GANAPATHI, V., AND PATTERSON, D. Win-
dows XP kernel crash analysis. Proc. of the Large Installation
System Administration Conf. (2006), 149–159.

[10] GOYAL, V., BIEDERMAN, E., AND NELLITHEERTHA, H.
Kdump, A Kexec-based Kernel Crash Dumping Mechanism.
Proc. of the Linux Symposium (2005), 169–181.

[11] GU, W., KALBARCZYK, Z., IYER, R., AND YANG, Z. Charac-
terization of Linux kernel behavior under errors. Proc. of the Intl.
Conf. on Dependable Systems and Networks (1993), 459–468.

[12] KING, S., DUNLAP, G., AND CHEN, P. Debugging operat-
ing systems with time-traveling virtual machines. Proc. of the
USENIX 2005 Technical Conf. (2005), 1–15.

[13] LAADAN, O., AND NIEH, J. Transparent checkpoint-restart of
multiple processes on commodity operating systems. Proc. of the
2007 USENIX Technical Conf. (2007), 323–336.

[14] LEHMAN, T., SHEKITA, E., AND CABRERA, L. An evalua-
tion of the Starburst memory-resident storage component. IEEE
Trans. on Knowledge and Data Engineering (1992), 555–566.

[15] LOWELL, D. E., CHANDRA, S., AND CHEN, P. M. Exploring
failure transparency and the limits of generic recovery. Proc. of
the 4th Symposium on Operating System Design and Implemen-
tation (2000), 289–304.

[16] NG, W. Design and implementation of reliable main memory.
Ph.D. thesis (1999).

[17] SRINIVASAN, S., ANDREWS, C., KANDULA, S., AND Y., Z.
Flashback: A light-weight extension for rollback and determin-
istic replay for software debugging. Proc. of the USENIX 2004
Annual Technical Conf. (2004).

[18] SULLIVAN, M., AND CHILLAREGE, R. Software defects and
their impact on system availability: A study of field failures in
operating systems. Proc. of the 21st Intl. Symposium on Fault-
Tolerant Computing (1991), 2–9.

6


