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Abstract

Device drivers today lack two important properties:
guaranteed safety and cross-platform portability. We
present an approach to incrementally achieving these
properties in drivers, without requiring any changes in
the drivers or operating system kernels. We describe
RevEng, a tool for automatically reverse-engineering a
binary driver and synthesizing a new, safe and portable
driver that mimics the original one. The operating sys-
tem kernel runs the trusted synthetic driver instead of the
original, thus avoiding giving untrusted driver code ker-
nel privileges. Initial results are promising: we reverse-
engineered the basic functionality of network drivers in
Linux and Windows based solely on their binaries, and
we synthesized safe drivers for Linux. We hope RevEng
will eventually persuade hardware vendors to provide
verifiable formal specifications instead of binary drivers;
such specifications can be used to automatically synthe-
size safe drivers for every desired platform.

1 Introduction

As far as kernel-mode code goes, device drivers are quite
buggy. On Linux, for instance, device drivers have3×

to 7× higher bug density than the rest of the kernel
code [8]. Most drivers originate either with hardware
manufacturers—sole holders of the secrets of a device’s
internals—or part-time open-source contributors. Writ-
ing reliable software and keeping abreast of the latest
changes in OS interfaces is not the core competence of
a hardware manufacturer, so writing drivers is typically
outsourced to third-party companies, which are by now
largely commoditized and often do not have a quality
reputation to uphold. Not surprisingly, drivers caused
85% of crashes on Windows XP [25] and over one mil-
lion crashes on Windows Vista [23].

It is ironic then that we are comfortable running such
code inside our kernels, especially if we are at all para-
noid about viruses, spyware, and other malware. Buggy
drivers not only crash systems, but also compromise se-
curity. Last year, for example, a zero-day vulnerability

was disclosed within a third-party driver shipped with
all versions of Windows XP: secdrv.sys, developed by
Macrovision as part of SafeDisc [31]. This vulnerability
allows non-privileged users to elevate their privileges to
Local System, leading to complete system compromise.

Driver safety has garnered a lot of merited atten-
tion over the years: microkernels run drivers in user
space [14], virtual machine-based approaches isolate
drivers from the OS kernel [20, 12, 26, 19], micro-
drivers reduce the amount of driver code run in the ker-
nel [13], and Nooks can mitigate the consequences of
driver failure by isolating user-mode applications from
the driver [30]. Many of these approaches are not end-all
solutions, but mainly intermediate steps—some require
driver source code modifications, others introduce sig-
nificant performance overheads, etc. More radical ap-
proaches aim for drivers that are safe by construction,
using domain-specific languages [29, 21, 28]; these too
require changes in how drivers are written and do not of-
fer yet a solution for existing drivers.

Besides being unsafe, drivers are also non-portable,
because of the close driver/kernel coupling; this hurts
both consumers and vendors. Consumers are constrained
to one or two OSes if they want good device support,
and they are often forced to upgrade to new versions if
they want to benefit from new peripherals. Vendors suf-
fer as well, because the cost of porting and supporting
drivers on multiple OSes is often prohibitive, so they re-
lease drivers only for one or two major platforms, thus
restricting the market reach of their products.

Portability, like safety, has also received due attention.
Attempts like the Uniform Driver Interface [27] had lim-
ited success, mainly because they required close coop-
eration between hardware vendors. Others, like NDIS-
wrapper [24], were targeted only at specific subsystems.

In this paper we present a new approach to both the
safety and portability challenges: RevEng automatically
extracts from binary device drivers the protocol for in-
teracting with hardware and then encodes it into a safe
driver that can be run in an unmodified kernel. Until
hardware vendors themselves start providing open spec-
ifications, reverse-engineering can provide a solution.
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2 Reverse-Engineering Device Drivers

Reverse-engineering consists of distilling from the bi-
nary device driver its essence: the embedded protocol
it uses to interact with hardware. This protocol en-
codes what the driver must do to perform tasks like send-
ing or receiving packets, setting screen resolutions, etc.
RevEng proceeds in two phases: First, it records traces
of hardware I/O interactions, memory accesses, and exe-
cuted instructions. Second, it combines the traces with a
static analysis of the driver’s binary to obtain the protocol
state machine. This knowledge is then re-encoded into
a safe synthetic driver targeted at the same or different
OS. For each class of devices, RevEng relies on a driver
template that contains the platform-specific boilerplate
for that class; the extracted state machine is then used to
“specialize” the boilerplate with the device-specific ele-
ments. Templates can be generated with tools like Win-
Driver [16]. Figure 1 illustrates RevEng’s functionality:
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Figure 1: Reverse-engineering drivers with RevEng.

2.1 Extracting the State Machine

Device drivers can be viewed as state machines that en-
capsulate the protocol for communicating with hardware;
RevEng’s goal is to extract this state machine. The states
of the automaton are snapshots of some of the driver’s
heap and stack variables. The transition conditions can
be predicates on hardware registers or direct kernel invo-
cations of the driver entry points, i.e., the driver functions
visible to the OS. Finally, the transition actions result in
the driver generating output values that get written to the
hardware registers and the kernel.

The driver’s internal organization and specifics of the
data structures are irrelevant to the protocol state ma-
chine. Network driverA may batch incoming packets
before delivering them to the OS, while driverB may
deliver each one upon arrival; yet, both drivers imple-
ment the same driver/hardware protocol, and the hard-
ware cannot distinguish betweenA andB. Of course,
user-perceived performance may differ substantially.

To trace the binary device driver’s states and transi-
tions, we use QEMU [3], an open-source virtual machine
monitor. The driver runs inside a virtual machine, and

RevEng snoops all interactions between the driver and
the virtual hardware, traces the program counters of in-
structions executed by the driver, the register values in-
volved in function calls, and all memory accesses.

RevEng then mines the obtained traces for correlations
between inputs provided to the driver and its actions.
Consider the following very simple example: a partic-
ular register on the network card always has value0x5b
when a packet is sent, regardless of packet size or desti-
nation; this value switches to0x6b any time a packet is
received. RevEng concludes that sending a packet most
likely requires depositing0x5b in that particular register
and receiving a packet requires value0x6b.

We supplement trace analysis with static analysis of
the driver’s binary. Besides constant writes, drivers may
also compute values for the registers, such as a packet
length. To reverse-engineer this computation, we find the
program slices [33] for those instructions that perform
hardware register writes; the slice of such an instruction
consists of all the instructions that affect its operands.
The program counter traces are used to narrow down the
execution path followed by the driver through the slice.
RevEng then extracts the logic that computes the value
written to the registers. To identify the state (i.e., driver
variables) used in the computation, RevEng uses the cor-
responding memory trace.

RevEng also tracks calls to specific kernel APIs, in
order to infer when drivers run asynchronous code via
timers, threads, or interrupts. All such operations must
be registered with the kernel via specific APIs, to give
the kernel the address of the corresponding handler. By
recording these calls in the trace, RevEng has sufficient
information to identify the asynchronous properties of
the original driver and reconstruct them in the synthe-
sized driver. Some asynchronous operations might not
have an obvious cause-effect relationship; for example, a
driver might decide to switch from asynchronous I/O to
polling long after the trigger event occurred. However,
by identifying the state that was updated by the trigger
event and later used in deciding the switch to polling,
RevEng is able to correlate the trigger events with tran-
sitions of the driver’s state machine.

2.2 Synthesizing New Drivers

To obtain the synthetic executable driver, the slices
obtained in the previous step (§2.1) are converted by
RevEng into C code, similar to how a decompiler would
do it [9]. Memory accesses captured in the trace are re-
placed with symbolic names in the generated C code.
Stack accesses are replaced by local variables. Heap ac-
cesses are matched with the traced memory blocks pro-
vided by the kernel or allocated by the driver. Instruction
and memory traces help resolve pointer aliasing ques-
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tions and allow memory-mapped I/O to be distinguished
from normal memory accesses [10].

The result is a set of C code blocks that represent
the reverse-engineered state machine. Executing these
RevEng-generated code blocks would result in the same
traces as those recorded while snooping on the original
driver. The code blocks implement all device-specific ac-
tions, thus providing the coupling between the driver and
the device. For instance, these code sequences indicate
how to send/receive network packets or how to reset the
NIC for the network device under study.

The boilerplate that forms a driver template consists
of the high-level logic of a driver corresponding to that
particular class of devices along with the glue code that
couples the driver to the kernel. For instance, a net-
work driver must be able to initialize the network card,
send packets, and receive packets. For a given operating
system, these operations are invoked via specific kernel
functions and follow a specific sequence. All this code
would be contained in the network driver template. Cur-
rently, all templates are written in C.

Synthesizing a new driver consists of “pasting” the
reverse-engineered C code blocks into the driver tem-
plate, to specialize the boilerplate into a functional driver
specific to the device in question. Currently, this spe-
cialization is still done manually, but we hope RevEng to
eventually do it automatically.

The reverse-engineering process occurs incrementally.
A given trace represents one particular execution path
through the original driver code, and many basic blocks
may not have been exercised. These result in miss-
ing blocks of the sate machine; RevEng annotates such
blocks with special markers (preprocessor macros) indi-
cating that they correspond to existing functionality that
has not been reverse-engineered yet. For example:

if (reg2 < 10) {
pktlen = reg2 + 64 + hdrlen ;
disable() ;
outportb( PADR, pktlen ) ;
enable() ;

} else
NOT_EXPLORED ;

As additional executions cover previously-unexplored
basic blocks, the functionality is progressively dis-
covered, and the macros are replaced with reverse-
engineered code blocks.

It is also possible to steer the original driver down un-
exercised paths. For instance, we can compute path con-
straints using symbolic execution [18] and solve them to
obtain input values that will take the driver down the de-
sired paths [4, 17]. RevEng does not support such steer-
ing yet. The most difficult paths to exercise are error
recovery paths, and we intend to use (virtual) hardware
fault injection to reach them. We want to employ both

types of steering as part of a feedback loop to dynami-
cally reverse-engineer unexercised paths.

3 Properties of Synthesized Drivers

Five properties are of interest to RevEng: equivalence,
completeness, safety, liveness, and portability.

Equivalence: To the hardware, I/O operations per-
formed by the synthesized driver should be indistinguish-
able from those performed by the original driver. In our
current prototype, this generally holds, except we can-
not yet reverse-engineer all error recovery paths. So,
by generating certain errors, the hardware could tell the
two drivers apart. Note that equivalence is not the same
as completeness, i.e., the property that the synthesized
driver can do everything the original one did.

Completeness:It is not always feasible to completely
reverse-engineer a driver. Fortunately, partial reverse-
engineering can be quite useful (e.g., having all 2D ac-
celeration in a graphics driver but perhaps not the 3D
one). Nevertheless, a future version of RevEng will be
able to run the synthesized driver in parallel with the
original one, the latter suitably sandboxed in a virtual
machine. Requests that cannot be handled by the syn-
thesized driver are relayed to the sandbox; tracing the
execution can be used to augment the synthesized driver
progressively, until it becomes complete. The state of the
two drivers has to be kept synchronized; since state vari-
ables have the same layout in both drivers, state can be
explicitly copied to the target stack and heap, and execu-
tion transferred to the not-yet-reverse-engineeredblocks.

This raises the question of when is a synthetic driver
ready to replace the original? From a subjective user’s
perspective, it is when all the desired functionality has
been reverse-engineered. Objectively, completeness can
be measured as coverage of the original’s basic blocks,
functions, or code paths. We must also take into account
loop and array boundaries, where tracing one iteration
or one access may not be enough. For the drivers we
reverse-engineered, a naive workload was sufficient to
obtain a useful network driver (§4 has more details).

Safety: The synthetic driver arises from merging a
driver template with a reverse-engineered state machine.
We expect the driver template, whether generated manu-
ally or by tools (e.g., WinDriver [16]), to be checked for
correctness using formal methods (e.g., with SLAM [2]).
This is a worthwhile investment, because templates can
be reused across drivers of the same class.

The state machine is assumed safe by construction.
RevEng uses recorded traces and any trace that has led
to a safety violation (e.g., that resulted in a crash because
of a bad pointer) are not used in the reverse-engineering
process. As long as all “bad traces” can be excluded
as non-safe, the resulting state machine will be safe.
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RevEng must be trusted to generate correct code, much
the same way a compiler is trusted. Devices with pro-
grammable firmware might be sensitive to missing error
recovery paths or certain timing characteristics. In gen-
eral, however, hardware and its drivers are indulgent with
respect to timing [34].

Liveness: Infinite loops and deadlocks in drivers
would cause the kernel to hang; RevEng ensures that
reverse-engineered loops can never become infinite and
deadlocks are not encountered. In our instruction traces,
loops appear as a sequence of duplicated loop bodies. We
found that the Linux driver base and the Windows Driver
Kit [22] have only five types of loops: ones with constant
number of iterations (typically used to initialize regis-
ters), polling loops, delay loops, data transfer loops, and
structure traversal loops. RevEng reverse-engineers the
first three automatically, although the constant-iterations
loops are still kept unrolled. Data transfer loops and
structure traversal loops are currently deferred to manual
inspection, but we are working on automatically gener-
ating these too.

Portability: Driver templates are easy to generate for
common classes of devices, because these devices tend to
operate in the same manner, e.g., all graphic card drivers
set up a framebuffer and perform similar operations on
it. Templates are OS-specific. In some cases, it may be
worthwhile generating more specialized templates for a
particular line of devices from the same manufacturer,
enabling quicker support of new models. We have not yet
worked with highly specialized custom devices, which
might invalidate some of these assumptions.

When a new version of a driver is released, a future
version of RevEng will perform a binary diff to identify
the added code paths. Suitable workload will then be
generated to exercise the modified code paths, similarly
to automatic patch-based exploit generation [6].

4 Preliminary Results

We reverse-engineered the Linux NE2000 8390 network
device driver and generated a synthetic driver that can
reliably initialize the network interface, set the MAC ad-
dress, and send/receive packets. Performance overhead
is negligible both in terms of throughput and latency.
For state machine extraction we used a 500 KB trace
obtained with a 5-second workload consisting of send-
ing and receiving packets of different sizes. Specializ-
ing the template was done manually and took∼4 hours.
The stripped binary of the synthetic driver is 12 KB com-
pared to 18 KB for the original driver; the size difference
is mostly due to the reduced functionality.

We also used RevEng to port the Windows NE2000
8029AS driver to Linux, using the same workload as
above. Manual specialization of the template took con-

siderably longer (∼3 days) and was error-prone, primar-
ily because of the programmer-unfriendly code gener-
ated by RevEng and due to the API differences between
Linux and Windows kernels. All the integration errors
were in the hardware-specific portion of the driver and
did not affect the safety of the driver from the point of
view of the OS. We are currently working on generating
friendlier code and automating the process.

Even low coverage turned out to result in a useful
driver. With the 5-second workload we obtained a basic
block coverage of 48% and 56% for the Linux and Win-
dows driver, respectively. In Windows, many low-level
functions achieved full coverage. However, more com-
plex drivers will likely require higher coverage, if we are
to obtain useful synthetic drivers.

5 Discussion

We believe that safe synthetic drivers provide a bet-
ter way to run privileged code that interacts with hard-
ware: they reduce downtime and security vulnerabilities,
and can help kernels promise higher data integrity. An-
other advantage is portability: imagine “instantly port-
ing” drivers from one platform to another, to the bene-
fit of consumers, who can use all hardware devices with
their favorite OS, and the benefit of vendors, who no
longer have to invest in providing drivers for multiple
platforms. The time and effort savings can be used to
build better hardware. All these benefits can be had with-
out changes to any OS kernel. However, there are still a
few open questions, which we address next.

5.1 When Is A Driver RevEng-able?

To reverse-engineer a driver, the semantics of its inter-
face with the external world must be sufficiently well un-
derstood to connect cause (e.g., the invocation of an entry
point) and effect (e.g, a sequence of hardware I/O).

Operations such asioctl can blur this connec-
tion. For instance, user-mode applications are often
used to configure graphics cards; these applications is-
sueioctls to the device. A click in the configuration
GUI may therefore cause a sequence ofioctls in a way
that is entirely user-dependent. We intend to augment
RevEng with data flow analysis that will help track the
input from the configuration change to the hardware reg-
isters, such that we synthesize a driver that preserves the
ioctl-based interface. This would enable the reuse of
the original proprietary user-mode applications.

For some devices (e.g., that are not part of a commonly
used class of hardware), producing a template may seem
to require more effort than simply writing a driver. Nev-
ertheless, mandatory boilerplate is quite large (e.g., on
Windows, power management support must be included
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for all plug-and-play devices, regardless of whether they
need it or not), so separating driver code into template
vs. device-specific code is anyway a good idea.

5.2 Extracting Hardware Specifications

In addition to the hardware protocol, RevEng also ob-
tains a specification of the hardware, as encoded in the
original device driver. This hardware specification, once
translated into a formal language, can be used to ver-
ify the assumptions of the original driver implementation
against the hardware’s actual specification.

To recover the semantics of registers, RevEng records
multiple traces while perturbing input parameters (e.g.,
which mouse button is pressed, the size of data packets,
screen resolution). The I/O differences between traces
are then correlated to the changing parameter, in a way
similar to opcode reverse-engineering [15]. Our current
technique requires refinement, though. While effective
at recovering register semantics of simple devices, such
as a PS/2 mouse, aligning traces to compare registers be-
comes challenging for complex drivers: the same reg-
ister might have different meanings depending on con-
text (as in the case of register banks), and the traces can
be polluted by unrelated I/O. We are working both on
techniques for better filtering of traces and statistical ap-
proaches to trace correlation.

5.3 Legal Aspects

Some parts of RevEng resemble decompilation, because
we translate original binary code into C. This may have
legal implications, if the binary is protected by intellec-
tual property rights, patents, or has an otherwise restric-
tive license. It could also prevent the use of RevEng as
a way to generate synthetic drivers for subsequent redis-
tribution. Employing RevEng for private use, however,
should not be problematic; once RevEng is fully auto-
mated, private use could be the preferred usage scenario.

Projects connected to reverse-engineering of propri-
etary software, like Wine [1] or ReactOS [11], have had
legal problems in the past. We believe this type of chal-
lenges can be mitigated if the extracted code, which we
now use to specialize driver templates, is treated as a
mere specification of the driver, not as raw code to inject
into the template. This would ensure no original code
leaks from the original driver to the synthetic one—an
approach that conforms to the clean-room principle [5].

5.4 Challenges of Reverse-Engineering

RevEng’s current reliance on QEMU introduces certain
limitations. First, it is not possible to recover drivers
unless an emulation of the corresponding device exists.

Second, QEMU does not fully emulate error conditions,
like packet transmission errors or seek errors on disk
drives; to reproduce such conditions, we would have to
interface QEMU with real hardware. Third, QEMU’s
PCI emulation approach [32] is limited to port I/O and
interrupts; however, modern PCI hardware also needs
support for DMA and PCI-Express. DMA support can
be added using IOMMUs, while PCI-Express support
would require the emulation of a virtual chipset interface.

Our current tracing infrastructure introduces a two-
fold slowdown in the driver that is being traced, because
of the disk accesses for writing the trace; there is no im-
pact on code running outside of the driver, since it is not
instrumented, and the synthesized driver’s performance
is not affected either (§4). However, the tracing slow-
down could affect RevEng’s ability to reverse-engineer
time-sensitive drivers. Acquisition devices, like sound
cards, have certain real-time requirements; if tracing is
too slow, the driver may end up executing mostly recov-
ery code, due to timeouts. In such cases, we can use hard-
ware tracing solutions [7] instead of virtual machines.

Many of these challenges arise from the fact that we
start by reverse-engineering binary device drivers. How-
ever, we view reverse-engineering as a stopgap measure,
and we hope that a successful RevEng will persuade
hardware vendors to provide specifications in a standard-
ized formal hardware abstraction language (HAL) in-
stead of binary drivers. Some of them already provide
informal specifications in datasheets. Others may need to
reconsider how they develop their hardware interfaces, to
prevent competitors from inferring sensitive information
about their chips. Once HAL specifications are available,
RevEng can generate safe, verified drivers for any plat-
form of interest.

6 Conclusion

We proposed a new approach to solving the problem of
safety and portability of device drivers, without requir-
ing access to source code or any modifications to hard-
ware, drivers, or existing operating systems. RevEng
takes the original binary driver, executes it in a virtual
machine, and traces its interaction with hardware. The
traces are then used to extract the hardware interaction
protocol embodied in the driver. While RevEng can pro-
vide safety and portability today, our hope is that eventu-
ally hardware vendors will migrate to a model in which
they release formal specifications of the hardware inter-
action protocols, instead of closed binary drivers. Once
they do, the world will be a better place: operating sys-
tems will crash less, new devices will be supported on
all platforms, and the OS playing field will become more
level. Hardware obsolescence will slow down and there
will be fewer forced upgrades and unjustified costs.
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